b
系数平方和系数的绝对值
import numpy as np
from numpy import genfromtxt
from sklearn import linear_model
import numpy as np
from numpy import genfromtxt
from sklearn import linear_model
In [4]:
#读入数据
data = genfromtxt(r"longley.csv",delimiter=',')
print(data)
#读入数据
data = genfromtxt(r"longley.csv",delimiter=',')
print(data)
[[ nan nan nan nan nan nan nan nan]
[ nan 83. 234.289 235.6 159. 107.608 1947. 60.323]
[ nan 88.5 259.426 232.5 145.6 108.632 1948. 61.122]
[ nan 88.2 258.054 368.2 161.6 109.773 1949. 60.171]
[ nan 89.5 284.599 335.1 165. 110.929 1950. 61.187]
[ nan 96.2 328.975 209.9 309.9 112.075 1951. 63.221]
[ nan 98.1 346.999 193.2 359.4 113.27 1952. 63.639]
[ nan 99. 365.385 187. 354.7 115.094 1953. 64.989]
[ nan 100. 363.112 357.8 335. 116.219 1954. 63.761]
[ nan 101.2 397.469 290.4 304.8 117.388 1955. 66.019]
[ nan 104.6 419.18 282.2 285.7 118.734 1956. 67.857]
[ nan 108.4 442.769 293.6 279.8 120.445 1957. 68.169]
[ nan 110.8 444.546 468.1 263.7 121.95 1958. 66.513]
[ nan 112.6 482.704 381.3 255.2 123.366 1959. 68.655]
[ nan 114.2 502.601 393.1 251.4 125.368 1960. 69.564]
[ nan 115.7 518.173 480.6 257.2 127.852 1961. 69.331]
[ nan 116.9 554.894 400.7 282.7 130.081 1962. 70.551]]
In [6]:
#切分数据
x_data = data[1:,2:]
y_data = data[1:,1]
print(x_data)
print(y_data)
[[ 234.289 235.6 159. 107.608 1947. 60.323]
[ 259.426 232.5 145.6 108.632 1948. 61.122]
[ 258.054 368.2 161.6 109.773 1949. 60.171]
[ 284.599 335.1 165. 110.929 1950. 61.187]
[ 328.975 209.9 309.9 112.075 1951. 63.221]
[ 346.999 193.2 359.4 113.27 1952. 63.639]
[ 365.385 187. 354.7 115.094 1953. 64.989]
[ 363.112 357.8 335. 116.219 1954. 63.761]
[ 397.469 290.4 304.8 117.388 1955. 66.019]
[ 419.18 282.2 285.7 118.734 1956. 67.857]
[ 442.769 293.6 279.8 120.445 1957. 68.169]
[ 444.546 468.1 263.7 121.95 1958. 66.513]
[ 482.704 381.3 255.2 123.366 1959. 68.655]
[ 502.601 393.1 251.4 125.368 1960. 69.564]
[ 518.173 480.6 257.2 127.852 1961. 69.331]
[ 554.894 400.7 282.7 130.081 1962. 70.551]]
[ 83. 88.5 88.2 89.5 96.2 98.1 99. 100. 101.2 104.6 108.4 110.8
112.6 114.2 115.7 116.9]
In [9]:
#创建模型;CV交叉验证
model = linear_model.LassoCV()
model.fit(x_data,y_data)
#Lasso系数
print(model.alpha_)
#相关系数
print(model.coef_)
20.03464209711722
[0.10206856 0.00409161 0.00354815 0. 0. 0. ]
In [10]:
model.predict(x_data[-2,np.newaxis])
#倒数第二行
Out[10]:
array([115.6461414])