字符串比较问题(动态规划算法)
对于长度相同的2个字符串A和B,其距离定义为相应位置字符距离之和。2个非空格字符的距离是它们的ASCII码之差的绝对值。空格与空格的距离为0,空格与其他字符的距离为一定值k。
在一般情况下,字符串A和B的长度不一定相同。字符串A的扩展是在A中插入若干空格字符所产生的字符串。在字符串A和B的所有长度相同的扩展中,有一对距离最小的扩展,该距离称为字符串A和B的扩展距离。
算法要求如下
1、 数据输入:第1行是字符串A,第2行是字符串B,第3行是空格与其他字符的距离定值k。
2、 输出:字符串A和B的扩展距离。
例如
输入:
cmc
snmn
2
输出:10
直接给dp公式吧
val(i,j)=min{val(i-1,j)+k,val(i,j-1)+k, val(i-1,j-1)+dist(ai,bj)}
分析:
比如a数组i个数
b数组j个数
设他们的最优解释dp[i][j]
怎么求得这个最优解呢?
第一种可能:a有i-1个数,b有j个数,可能是dp[i-1][j]取了最优解+2(即a[i]和空格的固定距离)
第二种可能:第一种情况的反之
第三种可能:dp[i - 1][j - 1],可能a[i]和b[j]相比,小于2呢?
所以得出了这个公式val(i,j)=min{val(i-1,j)+k,val(i,j-1)+k, val(i-1,j-1)+dist(ai,bj)}
所以这是一个根据底层求顶层的dp
再需要给底层先赋一下值就搞定了(a0个数 b1个数 2,2个数,4。。)
for (int i = 0; i < 4; i ++) { dp[i][0] = 2 * i; } for (int j = 0; j < 5; j ++) { dp[0][j] = 2 * j; }
dp公式
for (int i = 1; i <= a.length; i ++) {//3 for (int j = 1; j <= b.length; j ++) {//4 dp[i][j] = Math.min(dp[i][j - 1] + 2, Math.min(dp[i - 1][j] + 2, dp[i - 1][j - 1] + Math.abs(a[i - 1] - b[j - 1]))); } }
全部代码
public class TestLast { void cal() { char[] a = {'c', 'm', 'c'}; char[] b = {'s', 'm', 'm', 'n'}; int dp[][] = new int[4][5]; for (int i = 0; i < 4; i ++) { dp[i][0] = 2 * i; } for (int j = 0; j < 5; j ++) { dp[0][j] = 2 * j; } for (int i = 1; i <= a.length; i ++) {//3 for (int j = 1; j <= b.length; j ++) {//4 dp[i][j] = Math.min(dp[i][j - 1] + 2, Math.min(dp[i - 1][j] + 2, dp[i - 1][j - 1] + Math.abs(a[i - 1] - b[j - 1]))); } } System.out.println(dp[3][4]); } public static void main(final String[] args) throws Exception { TestLast t = new TestLast(); t.cal(); } }