字符串A和B的扩展距离,简单dp(动态规划)

字符串比较问题(动态规划算法)

   对于长度相同的2个字符串A和B,其距离定义为相应位置字符距离之和。2个非空格字符的距离是它们的ASCII码之差的绝对值。空格与空格的距离为0,空格与其他字符的距离为一定值k。

   在一般情况下,字符串A和B的长度不一定相同。字符串A的扩展是在A中插入若干空格字符所产生的字符串。在字符串A和B的所有长度相同的扩展中,有一对距离最小的扩展,该距离称为字符串A和B的扩展距离。

算法要求如下

1、 数据输入:第1行是字符串A,第2行是字符串B,第3行是空格与其他字符的距离定值k。

2、 输出:字符串A和B的扩展距离。

例如

输入:

      cmc

      snmn

      2

输出:10


直接给dp公式吧

val(i,j)=min{val(i-1,j)+k,val(i,j-1)+k, val(i-1,j-1)+dist(ai,bj)}


分析:

比如a数组i个数

b数组j个数

设他们的最优解释dp[i][j]


怎么求得这个最优解呢?

第一种可能:a有i-1个数,b有j个数,可能是dp[i-1][j]取了最优解+2(即a[i]和空格的固定距离)

第二种可能:第一种情况的反之

第三种可能:dp[i - 1][j - 1],可能a[i]和b[j]相比,小于2呢?


所以得出了这个公式val(i,j)=min{val(i-1,j)+k,val(i,j-1)+k, val(i-1,j-1)+dist(ai,bj)}

所以这是一个根据底层求顶层的dp


再需要给底层先赋一下值就搞定了(a0个数 b1个数 2,2个数,4。。)

for (int i = 0; i < 4; i ++) {
    dp[i][0] = 2 * i;
}

for (int j = 0; j < 5; j ++) {
    dp[0][j] = 2 * j;
}

dp公式

for (int i = 1; i <= a.length; i ++) {//3
    for (int j = 1; j <= b.length; j ++) {//4
        dp[i][j] = Math.min(dp[i][j - 1] + 2, Math.min(dp[i - 1][j] + 2, dp[i - 1][j - 1] + Math.abs(a[i - 1] - b[j - 1])));
    }
}

全部代码

public class TestLast {
    void cal() {
        char[] a = {'c', 'm', 'c'};
        char[] b = {'s', 'm', 'm', 'n'};

        int dp[][] = new int[4][5];

        for (int i = 0; i < 4; i ++) {
            dp[i][0] = 2 * i;
        }

        for (int j = 0; j < 5; j ++) {
            dp[0][j] = 2 * j;
        }

        for (int i = 1; i <= a.length; i ++) {//3
            for (int j = 1; j <= b.length; j ++) {//4
                dp[i][j] = Math.min(dp[i][j - 1] + 2, Math.min(dp[i - 1][j] + 2, dp[i - 1][j - 1] + Math.abs(a[i - 1] - b[j - 1])));
            }
        }

        System.out.println(dp[3][4]);
    }

    public static void main(final String[] args) throws Exception {
        TestLast t = new TestLast();
        t.cal();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值