神经网络浅尝

该博客通过MATLAB代码详细介绍了如何建立和训练一个神经网络。首先定义输入X和目标输出D,然后使用newff函数创建网络结构,并设置训练参数。接着,利用train函数进行网络训练,并通过sim函数仿真得到结果。最后,提取并展示了网络的权重和阈值。
摘要由CSDN通过智能技术生成
10.19 记录
看了一篇关于神经网络Matlab入门的文章,有所收获,记录下。
先贴上代码:

clear;
clc;
X=-1:0.1:1;
D=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609…
0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 -.0988…
0.3072 0.3960 0.3449 0.1816 -0.312 -0.2189 -0.3201];
figure;
plot(X,D,’’); %绘制原始数据分布图
net = newff([-1 1],[4 1],{‘tansig’,‘tansig’});
net.trainParam.epochs = 10000; %训练的最大次数
net.trainParam.goal = 0.0001; %全局最小误差
net = train(net,X,D);
O = sim(net,X);
figure;
plot(X,D,’
’,X,O,‘b’); %绘制训练后得到的结果和误差曲线
V = net.iw{1,1}%输入层到中间层权值
theta1 = net.b{1}%中间层各神经元阈值
W = net.lw{2,1}%中间层到输出层权值
theta2 = net.b{2}%输出层各神经元阈值
我来对这段代码进行解读,首先是X=-1:0.1:1;这个的意思是建立原始输入,在-1到1的范围内,以0.1为步长采样,即-1,-0.9,-0.8…这样。
接下来的D是Destination,即拟合的目标,目标输出。

net = new
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值