股票预测
文章平均质量分 58
人木
计算机视觉,python,JAVA
展开
-
从零开始用人工智能预测股票(一、特征选取)
随着人工智能的崛起,越来越多的学科正在被人工智能改造,包括金融领域的很多分析决策工作。而神经网络是目前最火的人工智能技术,在我的理解中,神经网络适合处理拥有大量实践数据,数据内部存在某种关系的问题,正好股票的涨跌看起来符合这样的规律。本教程是我自己摸索规律,学习使用算法和TensorFlow工具进行股票预测的记录,持续更新。1、特征选取为了用神经网络模拟大量数据中存在的某些关系,首先需要选取可能对...原创 2018-03-19 15:32:47 · 17038 阅读 · 2 评论 -
从零开始用人工智能预测股票(二、数据加工)
在聚数力平台上下载的股票数据为csv格式,内容为历史每日股票的基本数据,为了使数据能表现我们对股票预测因素的分析,我们需要对数据进行加工。我们选择上证指数作为示例,原始数据如下图:包括日期,前收盘价,开盘价,最高价,最低价,收盘价,成交量,成交金额,涨跌,涨跌幅。1、首先读取数据,将数据从文件中读入至程序列表中:def readData(): ''' 数据读取,从c...原创 2018-03-19 16:00:17 · 5416 阅读 · 1 评论 -
从零开始用人工智能预测股票(三、初步实现)
在数据加工好以后,我们用TensorFlow做简单的预测。按之前的做法去读取并加载数据 data,date= dp.readData() train,test,trainLables,testLabels= dp.normalization(data)然后添加变量和参数 x = tf.placeholder("float",[None,109]) w = tf.Vari...原创 2018-03-19 16:15:15 · 12471 阅读 · 1 评论 -
从零开始用人工智能预测股票(四、方案优化)
根据之前方案呈现的结果,当前存在以下问题:1、大盘数据较少,共6000多条数据,还需要留一部分做测试集2、大盘指数波动幅度较小,因此程序自动预测为0时撞上的几率较大3、网络形式简单,未考虑LSTM网络综上进行方案优化:1、使用上证市场的所有股票数据进行学习,股票数据加上当日大盘数据作为样本2、股票涨跌幅度应该是符合正态分布的,故对标签的分配重新划分,相对0成对称划分,且越靠近0处划分区域越小,以使...原创 2018-06-07 16:00:17 · 3683 阅读 · 1 评论