在数据加工好以后,我们用TensorFlow做简单的预测。
按之前的做法去读取并加载数据
data,date= dp.readData()
train,test,trainLables,testLabels= dp.normalization(data)
然后添加变量和参数
x = tf.placeholder("float",[None,109])
w = tf.Variable(tf.random_normal([109,21]))
b = tf.Variable(tf.random_normal([21]))
y = tf.nn.softmax(tf.matmul(x,w)+b)
y_ = tf.placeholder("float",[None,21])损失函数为交叉熵,y+1e-9为了保证交叉熵不为空,不加1e-9则无法继续计算:
#损失函数
cross_entropy = -tf.reduce_sum(y_*tf.log(y+1e-9))采用动态学习率,随步数进行递减
#设定学习率随时间递减
global_step = tf.Variable(0, trainable=False)
initial_learning_rate = 0.0001 #初始学习率
learning_rate = tf.train.exponential_decay(initial_learning_rate,
该博客介绍了如何使用TensorFlow进行股票预测的初步尝试。在数据预处理后,通过梯度下降法进行反向传播训练模型。尽管最终准确率在30%-40%,但由于模型简单和数据特性,大部分预测结果为零,与实际中股票涨跌幅为零的情况相符,因此模型的实际意义有限。作者计划针对涨跌幅较大的股票进行进一步研究。
最低0.47元/天 解锁文章
979

被折叠的 条评论
为什么被折叠?



