从零开始用人工智能预测股票(三、初步实现)

该博客介绍了如何使用TensorFlow进行股票预测的初步尝试。在数据预处理后,通过梯度下降法进行反向传播训练模型。尽管最终准确率在30%-40%,但由于模型简单和数据特性,大部分预测结果为零,与实际中股票涨跌幅为零的情况相符,因此模型的实际意义有限。作者计划针对涨跌幅较大的股票进行进一步研究。
摘要由CSDN通过智能技术生成

在数据加工好以后,我们用TensorFlow做简单的预测。

按之前的做法去读取并加载数据

    data,date= dp.readData()
    train,test,trainLables,testLabels= dp.normalization(data)

然后添加变量和参数

    x = tf.placeholder("float",[None,109])
    w = tf.Variable(tf.random_normal([109,21]))
    b = tf.Variable(tf.random_normal([21]))
    y = tf.nn.softmax(tf.matmul(x,w)+b)
    y_ = tf.placeholder("float",[None,21])
损失函数为交叉熵,y+1e-9为了保证交叉熵不为空,不加1e-9则无法继续计算:
#损失函数
    cross_entropy = -tf.reduce_sum(y_*tf.log(y+1e-9))
采用动态学习率,随步数进行递减
    #设定学习率随时间递减
    global_step = tf.Variable(0, trainable=False)
    initial_learning_rate = 0.0001 #初始学习率
    learning_rate = tf.train.exponential_decay(initial_learning_rate,
                          
股神--人工智能股票预测系统是专门为股票投资者开发的一套全新的基于人工智能技术的股票趋势预测软件平台。该软件以基因演化算法(GP)为内核对股票交易历史数据进行自动建模和学习,挖掘出股票交易大数据中隐藏的行为规律,并以此为依据对下一个股票日的最高价和最低价的涨跌趋势进行预测分析。该软件能够帮助您了解何时进入股市,何时退出股市,并在最佳的时机买进或卖出股票,从而获取最大的利润和收益。 支持6种典型的股票类别:上证指数、上证A股、上证B股、深证指数、深证A股和深证B股。 精确的股票预测信息(如上涨、下跌或持平)和买卖推荐信息(如买入、卖出、持股以及买入价、卖出价等)。 基因演化算法参数支持用户自定义,默认设置为种群大小:30,杂交概率:0.8,变异概率:0.1,最大运行代数:1000。 支持批量操作,如股票批量评测、模型批量训练、股票批量预测、批量增加股票代码、批量添加/撤销我的股票池等。 对大多数股票而言,最高价与最低价的涨跌趋势预测准确度达60%-80%;对部分股票而言,预测准确度最高可达90%。 仅需简单的操作即可完成股票评测、智能选股、模型训练以及股票预测等功能。 系统主界面支持从云数据库和本地数据库自动更新最优股票预测信息。 支持流行的微软Windows操作系统,如Windows 98/Me/2000/XP/Vista/7。 股神--人工智能股票预测系统既适用于专业的股票投资者,也适用于股票初学者。您可以通过股神系统轻轻松松地完成股票评测、智能选股、模型训练以及股票预测等功能,所有操作简单易懂,软件界面友好大方。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值