欧几里德算法(Euclidean algorithm)

     1.概述


欧几里德算法又称 辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
gcd函数就是用来求(a,b)的 最大公约数的。
gcd函数的基本性质:
gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)
2.原理
设两数为a、b(a>b),用gcd(a,b)表示a,b的 最大公约数,r=a (mod b) ,k=a/b(整除),即a÷b=k .......r。
1:令c=gcd(a,b),则设a=mc,b=nc // 因为c是最大公约数
2:根据 a÷b=k ....... r,可列k*b+r=a,代入a,b,解得r=c*(m-n*k)
3:由2可知c是r的一个因数。
4:可以断定m-kn与n 互质(假设m-kn=xd,n=yd (d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)cd,b=nc=ycd,则a与b的一个公约数cd>c,故c非a与b的最大公约数,与前面结论矛盾),因此c也是b与r的最大公约数。
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕。
以上步骤的操作是建立在刚开始时r≠0的基础之上的。即m与n亦互质。
当r=0时,c=min(a,b).
代码如下:
int gcd(int a,int b)
    {
    if(b==0) return a;
    else return gcd(b,a%b);
    }
      
3.拓展欧几里德算法(Extra Euclidean algorithm)
现在我们知道c=gcd(a,b),那么对于a*x+b*y=c的不定方程,我们一定能找到一组特殊解(x0,y0),使得a*x+b*y=c成立、

x = x0 + (b/gcd)*t
       y = y0 -  (a/gcd)*t
       具体的原因可以去了解下贝祖等式

同时,我们也可以列出:

b*x1 + (a%b)*y1 = gcd  

       

我们知道: a%b = a - (a/b)*b('/'整除)

那么,我们可以进一步得到:

 gcd = b*x1 + (a-(a/b)*b)*y1

    = b*x1 + a*y1 – (a/b)*b*y1

    = a*y1 + b*(x1 – a/b*y1)

 x = y1
     y = x1 – a/b*y1
        有了递推式,就可以形成递归

int exgcd(int a,int b,int &x,int &y)
    {
    int ans,temp;
    if(b==0)
       {
        x=1;y=0;
        return a;
       }
    ans=exgcd(b,a%b,x,y);
    temp=x;
    x=y;
    y=temp-a/b*y;
    return ans;
    }   



      更多拓展的内容可以参考:http://blog.csdn.net/yo_joker/article/details/52578174
  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值