- 博客(25)
- 收藏
- 关注
转载 单图像去雾
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档全文摘抄自博主@hyfine_与@just_sort博客,原文地址如下:https://blog.csdn.net/f290131665/article/details/96404768https://blog.csdn.net/f290131665/article/details/96404768本文仅用作个人学习,转载请移步原文作者处。文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入
2021-08-06 14:07:48 418
原创 Pytorch基于官方模型实现Faster-RCNN自定义数据集多GPU并行训练
本文用于记录利用Pytorch官方目标检测模型(torchvision.models.detection.xx)训练自定义数据集的爬坑过程,不具备普适性排雷功能,代码规范度较差,主要用于个人记录回溯。本文基于:Pytorch官方fastrcnn的Tutorial以及中文博客完成。环境 win10-homebasic(Linux);Pytorch 1.4.0;torchvision 0.5.0; Python 3.6.5/3.8.5;OpenCV 4.2.0 ;CUDA 10.0
2020-11-06 16:24:35 3162 7
转载 基于OpenCV的Gamma校正原理与实现
声明:本文原文出自@零钱币的博文,原文地址为:https://blog.csdn.net/linqianbi/article/details/78617615。本文全文摘抄以及少量修订仅为本人学习、记录所用,若博主有异议请联系本人删除。gamma校正原理: 假设图像中有一个像素,值是 200 ,那么对这个像素进行校正必须执行如下步骤: 1. 归一化 :将像素值转换为 0 ~ 1 之间的实数。 算法如下 : ( i + 0. 5)/256 这里包含 1 个除法和 1 个加法操作。对于...
2020-10-19 17:50:05 4467 2
原创 竞争编码一些数字的计算问题
个人记录用,不回答任何相关问题。一些定义:六角度竞争编码图,一个像素的特征占用3bit,相邻角度间的差距值为1.(相邻角度间1的个数差1)。1)隔三个点采样的原因?A:startPoint=18,endPoint=112。18+3*k=112的话k=32个编码点,一个编码点占3 bit,sizeof(int )= 4 byte = 32 bit,因此一行的图像编码后正好可以用3
2017-11-09 18:59:50 724
转载 2014Science-一种基于局部点密度的聚类方法
本文全文摘自:@lvxiong1990 文章,原文地址:http://blog.csdn.net/lvxiong1990/article/details/40540065仅供个人学习使用。今年 6 月份,Alex Rodriguez 和 Alessandro Laio 在 Science 上发表了一篇名为《Clustering by fast search and find of density
2017-06-30 18:17:12 4863
转载 MDS- Multidimensional Scaling 多维尺度法 分析
本博客转载自@songrotek原创博客,原文地址:http://blog.csdn.net/songrotek/article/details/42235097在模式识别中,我们会考虑到距离distance的问题,就是一个样本和另一个样本在空间中的距离。根据距离的大小来判断分类。那么,也存在这样的一类问题:我们只知道空间中的点(样本)的距离,那么怎么来重构这些点的相对位置呢?显然
2017-06-22 08:40:39 3640
转载 卷积神经网络
本文仅用于个人学习,转载请注明原作者@张雨石及出处:http://blog.csdn.net/stdcoutzyx/article/details/41596663自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使
2017-04-07 17:20:06 707
转载 机器学习的一些通俗易懂的tutorial
原文转载自:http://blog.csdn.net/tkingreturn/article/details/19325919Prior, Likelihood, PosteriorMLAPP第3.2节,讲的很好,用了一个叫 number game 的小游戏做例子,通俗易懂距离和相似度度量距离和相似度度量 » webdataanalysis.net
2016-09-27 22:05:12 673
转载 马尔科夫随机场(MRF)
原文转载自@萝卜羊的文章,仅供个人学习参考使用,原文地址:http://blog.csdn.net/polly_yang/article/details/9716591 之前自己做实验也用过MRF(Markov Random Filed,马尔科夫随机场),基本原理理解,但是很多细节的地方都不求甚解。恰好趁学习PGM的时间,整理一下在机器视觉与图像分析领域的MRF的相关知识。
2016-09-20 22:24:36 2137
转载 矩阵的物理意
转载说明:原文转自@NightkidLi_911的文章,此处仅作为个人学习使用。原文地址:http://blog.csdn.net/nightkidli_911/article/details/38178533 及 http://blog.csdn.net/nightkidli_911/article/details/38189347矩阵的物
2016-09-20 22:16:07 1758 1
翻译 RANSAC与其改进
1. 经典RANSAC 由Fischer和Bolles在1981年的文章[1]中首先提出,简要的说经典RANSAC的目标是不断尝试不同的目标空间参数,使得目标函数C最大化的过程。这个过程是随机(Random)、数据驱动(data-driven)的过程。通过反复的随机选择数据集的子空间来产生一个模型估计,然后利用估计出来的模型,使用数据集剩余的点进行测试,获得一个得分,最终返回一个得
2015-09-18 14:22:50 33906 28
转载 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
声明:全文转载自@July_博客,原地址:http://www.cnblogs.com/v-July-v/archive/2012/11/20/3125419.html,转至本人博客 只为个人学习方便之用,原博有异议即删。前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1、KD树;2、神经网络;3、编程艺术第28章。你看到,blog
2015-09-08 10:11:37 4543
转载 支持向量机通俗导论(理解SVM的三层境界)
作者:July ;致谢:pluskid、白石、JerryLead。出处:结构之法算法之道blog。前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学
2015-06-26 18:33:33 1145
翻译 竞争编码
基于竞争编码的直线集匹配算法,可以用于指纹识别、掌纹识别等。算法对采集到的图像(直线图像)的角度进行编码,提出一种相似性度量方法。本文参考文献原目的旨在提供一种实时的掌纹匹配策略
2015-05-06 11:05:32 3886 2
翻译 欧几里得距离转换(EDT)算法
欧几里得距离转换(Euclidean Distance Transform, EDT)简单的说即是以最常用的欧几里得距离作为距离度量,找到每一个前景点到最近的背景点之间的距离。文中提及所有的算法中,均是将二维图片转为两个一维向量的方式进行。
2015-04-16 19:46:02 17539 3
原创 Super Parsing——基于Super Pixel 的非参数图像理解
流程:1. 输入图片img;2.在图片集中利用全局特征找出一些类似图片;3.将img分为super pixel;4.对每一类,计算super pixel的平均似然概率;5.依据super pixel在类似图片中的最近邻匹配,与马尔科夫随机域(MRF)模型结合,对img进行label。没有训练过程,通过全局特征找到与img类似的一些图片,得到希望获取的信息。sup
2015-02-09 18:09:36 5073
转载 从最大似然到EM算法浅解
从最大似然到EM算法浅解zouxy09@qq.comhttp://blog.csdn.net/zouxy09 机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问题呢?或者说EM算法是因为什
2014-11-18 10:31:52 802
转载 bp神经网络及matlab实现
本文主要内容包括: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 。第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://en.wikipedia.org/wiki/Iris_flower_data_set 找到。这里
2014-11-15 11:09:22 2378
转载 霍夫变换检测直线
1.在图像中检测直线的问题,其实质是找到构成直线的所有的像素点。那么问题就是从找到直线,变成找到符合y=mx+c的所有(x,y)的点的问题。2.进行坐标系变化y=mx+c,变成c=-xm+b。直线上的点(x1,y1),在转换坐标系后为一条直线。这个原理应该是高中的。 3.直线上每一个点在MC坐标系中都表现为直线,而且,这些直线都相交于一个点,(m,c)。找到所有点的问题,转变为寻找直
2014-05-15 17:55:59 9431
翻译 基于Local Search的直线匹配算法
----------------------------------------------------参考文献--------------------------------------------
2014-04-28 12:07:23 6759 3
转载 向量中点积叉积的计算方法
向量的点积和叉积定义向量的点积:假设向量u(ux, uy)和v(vx, vy),u和v之间的夹角为α,从三角形的边角关系等式出发,可作出如下简单推导: |u - v||u - v| = |u||u| + |v||v| - 2|u||v|cosα ===> (ux - vx)2 + (uy - vy)2 = ux2 + uy2 +vx2+vy2-
2014-04-18 15:51:04 4647
原创 极线约束(epipolar constraint)
三维空间中一点p,投影到两个不同的平面I1、I2,投影点分别为p1,p2。p、p1、p2在三维空间内构成一个平面S。S与面I1的交线L1过p1点,称之为相对于p2的极线。同理S与I2的交线称之为相对于p1的极线。如图:所谓极线约束就是说同一个点在两幅图像上的映射,已知左图映射点p1,那么右图映射点p2一定在相对于p1的极线上,这样可以减少
2014-02-20 11:13:25 46219 7
翻译 基于LSD的直线提取算法
Validation Step:The validation step is based on the a contrario approachand the Helmholtz principle proposed by Desolneux.the Helmholtz principle:在完美噪声图像图像中不应该检测到目标。 contrario approach:一
2013-12-30 14:54:09 60483 8
原创 基于边缘的模板匹配
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% a: model RGB image %% b: target RGB image %% c: output the match image %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%fun
2013-12-23 09:30:25 9716 4
转载 三维透视变换
From:维基百科。透视投影的定义可以理解为透过摄像机取景器对于被投影物体进行观察。摄像机的位置、朝向和视野都将影响投影变换的结果。我们定义以下变量来对这一变换进行描述::将被投影的三维空间中的点。:摄像机的位置。:摄像机的旋转角度。(也可以理解为物体的旋转角度,但是方向相反)当 =且 =, 三维向量将被投影到二维向量。:观测者相对显示平面的位置。最终结果为:
2013-11-01 16:18:12 3472
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人