牛客例题一百遍:最小的K个数

描述

给定一个数组,找出其中最小的K个数。例如数组元素是4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4。
0 <= k <= input.length <= 10000
0 <= input[i] <= 10000

示例1

输入:[4,5,1,6,2,7,3,8],4 
返回值:[1,2,3,4]
说明:返回最小的4个数即可,返回[1,3,2,4]也可以 

示例2

输入:[1],0
返回值:[] 

示例3

输入:[0,1,2,1,2],3
返回值:[0,1,1]

解体思路

思路一

直接排序。
代码如下:

   public ArrayList<Integer> GetLeastNumbers_Solution(int[] input, int k) {
        Arrays.sort(input);
        ArrayList<Integer> integers = new ArrayList<>();
        for (int i = 0; i < k; i++) {
            integers.add(input[i]);
        }
        return integers;
    }

复杂度分析:
时间复杂度:O( N log ⁡ N N\log N NlogN),快速排序复杂度。
空间复杂度:O( N N N)。

思路二

堆排序,建立个k大小的最大堆,依次排序,代码如下:

      public ArrayList<Integer> GetLeastNumbers_Solution(int[] input, int k) {
        ArrayList<Integer> res = new ArrayList<>(k);
        if (k == 0) {
            return res;
        }
        int[] heap = new int[k + 1];
        for (int i = 1; i < k + 1; i++) {
            heap[i] = input[i - 1];
        }
        buildMaxHeap(heap, heap.length);
        for (int i = k; i < input.length; i++) {
            if (heap[1] > input[i]) {
                heap[1] = input[i];
                adjustDown(heap, 1, heap.length);
            }
        }
        for (int i = 0; i < k; i++) {
            res.add(heap[i + 1]);
        }
        return res;


    }


    public void buildMaxHeap(int[] arr, int length) {
        for (int i = (length - 1) / 2; i > 0; i--) {
            adjustDown(arr, i, arr.length);
        }
    }


    public void adjustDown(int[] arr, int k, int length) {
        int tmp = arr[k];
        for (int i = 2 * k; i < length; i *= 2) {
            if (i + 1 < length && arr[i] < arr[i + 1]) {
                i++;
            }
            if (arr[i] < tmp) {
                break;
            } else {
                arr[k] = arr[i];
                k = i;
            }
        }
        arr[k] = tmp;
    }

复杂度分析:
时间复杂度:O( N log ⁡ K N\log K NlogK),K大小的堆,遍历一次。
空间复杂度:O( N N N)。

思路三

与堆排序类似,因为二叉排序树是特殊的堆,所以可以用TreeMap代替堆,从而减少代码量,代码如下:

    public ArrayList<Integer> GetLeastNumbers_Solution(int[] input, int k) {
        ArrayList<Integer> res = new ArrayList<>(k);
        if (k == 0) {
            return res;
        }
        TreeMap<Integer, Integer> resultTreeMap = new TreeMap<>();
        int count = 0;
        for (int i = 0; i < input.length; i++) {
            if (count < k) {
                resultTreeMap.put(input[i], resultTreeMap.getOrDefault(input[i], 0) + 1);
                count++;
                continue;
            }
            Map.Entry<Integer, Integer> lastEntry = resultTreeMap.lastEntry();
            if (lastEntry.getKey() > input[i]) {
                if (lastEntry.getValue() == 1) {
                    resultTreeMap.remove(lastEntry.getKey());
                } else {
                    resultTreeMap.put(lastEntry.getKey(), lastEntry.getValue() - 1);
                }
                resultTreeMap.put(input[i], resultTreeMap.getOrDefault(input[i], 0) + 1);
            }
        }
        Set<Map.Entry<Integer, Integer>> entries = resultTreeMap.entrySet();
        for (Map.Entry<Integer, Integer> entry : entries) {
            Integer entryCount = entry.getValue();
            for (int i = 0; i < entryCount; i++) {
                res.add(entry.getKey());
            }
        }
        return res;
    }

复杂度分析:
时间复杂度:O( N log ⁡ K N\log K NlogK),K大小的堆,遍历一次。
空间复杂度:O( N N N)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值