给定n个活动,其中的每个活动ai包含一个起始时间si与结束时间fi。设计与实现算法从n个活动中找出一个最大的相互兼容的活动子集S。
要求:分别设计动态规划与贪心算法求解该问题。其中,对贪心算法分别给出递归与迭代两个版本的实现。
思路
动态规划
动态规划的思路则对此问题来说较为复杂,定义Sij为在i任务结束之后,j任务开始之间所包含的任务的子集。定义两个虚拟任务ai、an+1,则问题对应了S0,n+1的解。Sij的元素数量则对应了任务的数量。通过递归方程可知复杂度为O(n3),可通过设定另一个二维数组以输出元素。
贪心算法
贪心算法的思路很简单,非空子集Sij,若am结束的时间最早,则有:
贪心准则:am一定属于Sij的某个最优解且Sim为空。
贪心准则的证明:
Aijj为Sij最优解,另其中的任务按照结束时间递增排序,令ak是Aij的第一个结束的任务,如果ak=am,则证明成立。否则我们将ak用a