深入理解区间调度问题:从贪心算法到动态规划的加权优化

引言

区间调度问题是一个经典的算法问题,它广泛应用于任务调度、资源分配等领域。本文将从基础的区间调度问题出发,介绍如何通过贪心算法高效解决这个问题。接着,我们会探讨问题的扩展——加权区间调度问题,并展示如何使用动态规划来解决该问题,以实现权重的最大化。通过对这两种算法的实现和对比,您将理解不同算法的应用场景、优劣以及最优性。

一、问题描述

1.1 经典的区间调度问题

经典的区间调度问题定义如下:

  • 我们有 (n) 个请求,每个请求 (i) 具有开始时间 (s(i)) 和结束时间 (f(i)),且 (s(i) < f(i))。
  • 两个请求 (i) 和 (j) 是兼容的,若它们的时间区间不重叠,即 (f(i) \leq s(j)) 或 (f(j) \leq s(i))。
  • 目标是从这些请求中选择一个最大兼容子集,确保所选请求的时间不重叠,并且尽可能多地选择请求。

例如,给定一组请求:

  • 请求1:(s(1) = 1, f(1) = 4)
  • 请求2:(s(2) = 3, f(2) = 5)
  • 请求3:(s(3) = 0, f(3) = 6)
  • 请求4:(s(4) = 5, f(4) = 7)
  • 请求5:(s(5) = 8, f(5) = 9)
  • 请求6:(s(6) = 5, f(6) = 9)

我们需要找到一个不重叠的最大请求子集。

1.2 加权区间调度问题

加权区间调度问题是经典区间调度问题的扩展:

  • 除了每个请求 (i) 具有开始时间 (s(i)) 和结束时间 (f(i)) 之外,每个请求还附带一个权重 (w(i))。
  • 目标从这些请求中选择一个最大权重兼容子集,即所有请求不重叠,并且所选请求的总权重最大。

二、贪心算法解决经典区间调度问题

在经典的区间调度问题中,贪心算法表现良好。它的核心思想是:每次选择结束时间最早的请求,这样可以为后续的请求留出更多的时间空间,保证能够选择尽可能多的不重叠请求。

2.1 贪心算法步骤
  1. 排序:按照请求的结束时间 (f(i)) 对所有请求进行升序排序。
  2. 选择:每次选择当前结束时间最早的请求,并排除与之重叠的其他请求。
  3. 重复:继续选择剩余请求中结束时间最早的请求,直到所有请求都处理完。
2.2 Python实现
class Request:
    def __init__(self, start, finish):
        self.start = start
        self.finish = finish

def greedy_interval_scheduling(requests):
    # 按结束时间排序
    sorted_requests = sorted(requests, key=lambda x: x.finish)
    
    selected_requests = []
    last_finish_time = 0
    
    # 选择结束时间最早且不重叠的请求
    for request in sorted_requests:
        if request.start >= last_finish_time:
            selected_requests.append(request)
            last_finish_time = request.finish
    
    return selected_requests

# 测试数据
requests = [
    Request(1, 4),
    Request(3,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

poison_Program

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值