肿瘤诊断 L3-004

点击打开链接

题目链接如上:

 就是求连通块的总和是多少。 如果一个连通块加起来大于等于t 就ans+=连通块的面积。

简单的BFS

#include <bits/stdc++.h>
//#include <ext/pb_ds/tree_policy.hpp>
//#include <ext/pb_ds/assoc_container.hpp>
//using namespace __gnu_pbds;
using namespace std;


#define LL long long
#define INF 1E4 * 1E9
#define pi acos(-1)
#define endl '\n'
#define me(x) memset(x,0,sizeof(x));
#define str(x) strlen(x);
#define fread() freopen("in.in","r",stdin)
#define fwrite() freopen("out.out","w",stdout)

const int maxn=1e6+5;
const int maxx=2e4+5;
const double EPS=1e-2;

//typedef tree<pt,null_type,less< pt >,rb_tree_tag,tree_order_statistics_node_update> rbtree;
int dx[]={1,-1,0,0,0,0};
int dy[]={0,0,1,-1,0,0};
int dz[]={0,0,0,0,1,-1};
int n,m,l,T;
int mapp[65][130][1300];
int ans=0;
struct node
{
    int x,y,z;
};
int check(int x,int y,int z)
{
  if((x<=0)||(y<=0)||(z<=0))
    return 0;
  if((x>l)||(y>n)||(z>m))
    return 0;
  return 1;
}
queue<node > Q;
void bfs(int xx,int yy,int zz)
{
    node t,q;
    mapp[xx][yy][zz]=0;
    t.x=xx;t.y=yy;t.z=zz;
    Q.push(t);
    int num=1;
    while(!Q.empty())
    {
        q=Q.front();
        Q.pop();
        for(int i=0;i<6;i++)
        {
            int tx=q.x+dx[i];
            int ty=q.y+dy[i];
            int tz=q.z+dz[i];
            if(check(tx,ty,tz)&&mapp[tx][ty][tz])
            {
                num++;
                t.x=tx;t.y=ty;t.z=tz;
                mapp[tx][ty][tz]=0;
                Q.push(t);
            }
        }
    }
    if(num>=T)
        ans+=num;
}
int main()
{
    cin>>n>>m>>l>>T;
    for(int i=1;i<=l;i++)
        for(int j=1;j<=n;j++)
            for(int k=1;k<=m;k++) cin>>mapp[i][j][k];
    for(int i=1;i<=l;i++)
        for(int j=1;j<=n;j++)
            for(int k=1;k<=m;k++)
                if(mapp[i][j][k]==1) bfs(i,j,k);
    cout<<ans<<endl;
}

















评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值