【AI开源大模型】Llama3.1一键本地部署最强开源大模型!支持Windows、Mac并可以可离线使用

一、需要准备的前提资料

首发来源:知音 の 小破站! www.zhiyin6.top

1. 本地电脑安装的硬件要求:​


​        Windows:3060以上显卡+8G以上显存+16G内存,硬盘空间至少20G

        Mac:M1、M2、M3芯片 16G内存,20G以上硬盘空间

2. Llama 3.1 安装所需Ollama客户端


        我们需要安装Ollama客户端来进行本地部署Llama3.1大模型
        点击进入下载地址
        下载完成后解压文件,(win)然后双击安装 ,(mac)把Ollama.app文件拉到Applications里就可以完成安装


 二、开始安装


win打开powershell
Mac打开终端工具(如iterm2)

1. 安装命令:


  安装llama3.1-8b,至少需要8G的显存,安装命令就是

ollama run llama3.1:8b

  安装llama3.1-70b,至少需要大约 70-75 GB 显存,适合企业用户,安装命令就是

ollama run llama3.1:78b

  安装llama3.1-405b,这是一个极其庞大的模型,安装和运行它在本地需要非常高的显存和硬件资源,至少需要大约 400-450 GB 显存,适合顶级大企业用户,安装命令就是

ollama run llama3.1:405b

2. 退出聊天输入/bye然后回车就可以:
 

/bye

3. 再次进入AI模型聊天就还是之前安装命令就可以,这次就不会再安装模型,直接进入聊天窗口了
 

ollama run llama3.1:8b

 三、如何卸载删除?


​Windows:

        默认的安装目录是:C:\Users\你的用户名\.ollama
直接在你的安装目录下,删除ollama文件夹即可, 所有下载的数据和大模型文件都在里面

Mac:

        默认的安装目录是:~/Applications/Ollama
1、卸载llama3.1:8b模型命令:

ollama rm llama3.1:8b

2、在~/Applications/目录下删除 Ollama文件就可以
 四、Llama3.1大模型免费在线平台


Huggingface平台        

已经托管了Llama3.1大模型,现在完全免费使用!
点击前往

<think>好的,用户需要寻找一个开源支持本地部署的实时对话数字人解决方案。首先,我得理解这几个关键词:开源、实时对话、数字人、本地部署。实时对话意味着系统需要快速响应,可能涉及流式语音处理和自然语言处理。本地部署则要求解决方案能在用户自己的服务器或设备上运行,不需要依赖外部云服务。 接下来,我需要回忆之前提供的引用内容,看看有没有相关的开源项目。引用3提到GitHub上一个3.1K星的项目,是业界首个流式语音合成系统,适合实时交互的数字人应用,强调低延迟和高响应速度,这符合实时对话的需求。引用2中的RTranslator虽然主要是翻译应用,但它的实时对话模式可能对数字人的交互设计有参考价值,不过不确定是否直接相关。引用4的EasyDarwin是流媒体服务,支持RTSP协议,可能在数字人的视频流传输中有用,但用户主要关注的是对话部分,可能不是核心。引用1提到的系统可能不相关,但源码获取方式可能有帮助。 所以,重点应放在引用3的流式语音合成系统上。用户需要的是完整的数字人解决方案,而不仅仅是语音合成。因此可能需要整合其他组件,比如语音识别(ASR)、自然语言处理(NLP)、对话管理,以及可能的动画渲染。需要确认是否有开源项目整合了这些模块支持本地部署。 另外,考虑用户可能需要其他推荐,比如结合多个开源工具。例如,使用Mozilla DeepSpeech或Kaldi进行语音识别,Rasa或Dialogflow(虽然Dialogflow不是开源)进行对话管理,加上引用3的流式语音合成,再使用Blender或Unity进行数字人动画。不过这样整合起来比较复杂,用户可能希望更集成的解决方案。 是否有其他开源项目?比如OpenAI的ChatGPT,但它是云服务,且不开源。可能有基于Transformer的开源模型,如Hugging Face的库,可以本地部署。此外,数字人方面,可能有像OpenCV处理面部动画,或者使用3D引擎如Unity或Unreal Engine,但这些都需要大量开发工作。 综合来看,引用3的流式语音合成是关键组件,但需要搭配其他工具。用户可能需要分步骤实施,先处理语音输入,再处理NLP,生成响应,再合成语音驱动数字人形象。此外,引用4的EasyDarwin可能用于视频流的传输,如果数字人需要实时视频输出的话。 在回答中,需要明确推荐引用3的项目作为核心,建议结合其他开源工具。同时,提醒用户本地部署的资源要求,比如计算能力和存储。可能还需要提到社区支持和文档是否完善,这对集成和部署很重要。 最后,检查是否有其他引用被忽略。引用2的RTranslator虽然主要做翻译,但它的实时对话架构可能对处理双向语音交互有帮助,可以作为参考,但可能不是直接解决方案。因此,回答应聚焦于引用3补充其他可能的工具,形成一个完整的解决方案。</think>### 开源实时对话数字人解决方案推荐 针对**开源支持本地部署的实时对话数字人**需求,需重点关注**低延迟交互能力**与**本地部署灵活性**。以下是综合推荐方案及技术要点: --- #### 1. **流式语音合成系统(核心组件)** 引用[^3]中提到的**GitHub 3.1K Star流式语音合成系统**是关键组件。其特点包括: - **流式生成**:支持边生成边输出语音,显著降低响应延迟(通常控制在500ms内),适合实时对话场景。 - **开源本地化**:代码完全开放,支持本地部署,无需依赖云端服务。 - **多语言支持**:可集成多语种语音库,适配全球化需求。 **部署建议**: - 需搭配高性能GPU(如NVIDIA T4)以保障合成速度。 - 可结合`FFmpeg`或`GStreamer`实现音频流封装与传输。 --- #### 2. **对话管理与自然语言处理(NLP)** 推荐以下开源工具链: - **语音识别(ASR)**:使用`Whisper`(OpenAI开源模型)或`Mozilla DeepSpeech`,支持本地部署且兼容多语言。 - **意图理解**:采用`Rasa`框架构建对话管理模块,支持自定义对话流程与知识库集成。 - **大语言模型(LLM)**:本地部署轻量级模型如`Llama 2`或`Alpaca`,用于生成自然对话响应。 ```python # 示例:Rasa对话流程(简化版) from rasa.core.agent import Agent agent = Agent.load("models/20231001-173445.tar.gz") response = await agent.handle_text("用户输入内容") ``` --- #### 3. **数字人形象驱动与渲染** - **2D动画引擎**:使用`Live2D`或`Unity`开源插件实现口型同步与表情驱动。 - **3D模型渲染**:基于`Blender`或`Unreal Engine`构建高拟真数字人,结合`ARKit`面部捕捉数据。 - **流媒体传输**:引用[^4]的`EasyDarwin`支持RTSP协议,可用于低延迟传输数字人视频流。 --- #### 4. **完整架构示例** ```plaintext 用户语音输入 → Whisper(ASR) → Rasa(NLP) → Llama 2(响应生成) → 流式语音合成 → 数字人动画渲染 → EasyDarwin流媒体输出 ``` --- #### 5. **部署注意事项** - **硬件要求**:需至少16GB内存、NVIDIA GPU(CUDA支持)及SSD存储。 - **隐私合规**:本地部署可避免数据外传,符合GDPR等法规要求。 - **社区支持**:上述工具均有活跃开源社区,可通过GitHub提交Issue获取技术支持。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小傑_有点飘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值