PyTorch之迁移学习

目录

转移学习的两个主要场景:

1.导入相关的包

2.加载数据

3.可视化部分图像数据

4.训练模型

5.可视化模型的预测结果

6.场景1:微调ConvNet

7.场景2:ConvNet作为固定特征提取器

完整代码

参考文章


实际中,基本没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,很难得到一个足够大的数据集[网络很深, 需要足够大数据集]。通常的做法是在一个很大的数据集上进行预训练得到卷积网络ConvNet, 然后将这个ConvNet的参数作为目标任务的初始化参数或者固定这些参数。

转移学习的两个主要场景:

  • 微调Convnet:使用预训练的网络(如在imagenet 1000上训练而来的网络)来初始化自己的网络,而不是随机初始化。其他的训练步骤不变。
  • Convnet看成固定的特征提取器:首先固定ConvNet除了最后的全连接层外的其他所有层。最后的全连接层被替换成一个新的随机 初始化的层,只有这个新的层会被训练[只有这层参数会在反向传播时更新]

下面是利用PyTorch进行迁移学习步骤,要解决的问题是训练一个模型来对蚂蚁和蜜蜂进行分类。

1.导入相关的包

# License: BSD
# Author: Sasank Chilamkurthy

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()   # interactive mode

2.加载数据

今天要解决的问题是训练一个模型来分类蚂蚁ants和蜜蜂bees。ants和bees各有约120张训练图片。每个类有75张验证图片。从零开始在 如此小的数据集上进行训练通常是很难泛化的。由于我们使用迁移学习,模型的泛化能力会相当好。 该数据集是imagenet的一个非常小的子集。从此处下载数据,并将其解压缩到当前目录。

#训练集数据扩充和归一化
#在验证集上仅需要归一化
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224), #随机裁剪一个area然后再resize
        transforms.RandomHorizontalFlip(), #随机水平翻转
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

3.可视化部分图像数据

可视化部分训练图像,以便了解数据扩充。

def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# 获取一批训练数据
inputs, classes = next(iter(dataloaders['train']))

# 批量制作网格
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

可视化部分图像数据

4.训练模型

编写一个通用函数来训练模型。下面将说明: * 调整学习速率 * 保存最好的模型

下面的参数scheduler是一个来自 torch.optim.lr_scheduler的学习速率调整类的对象(LR scheduler object)。

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # 每个epoch都有一个训练和验证阶段
        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # 迭代数据.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 零参数梯度
                optimizer.zero_grad()

                # 前向
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # 后向+仅在训练阶段进行优化
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # 统计
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # 深度复制mo
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # 加载最佳模型权重
    model.load_state_dict(best_model_wts)
    return model

5.可视化模型的预测结果

#一个通用的展示少量预测图片的函数
def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)

6.场景1:微调ConvNet

加载预训练模型并重置最终完全连接的图层。

model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# 观察所有参数都正在优化
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# 每7个epochs衰减LR通过设置gamma=0.1
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

训练和评估模型

(1)训练模型 该过程在CPU上需要大约15-25分钟,但是在GPU上,它只需不到一分钟。

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)
  • 输出
Epoch 0/24
----------
train Loss: 0.7032 Acc: 0.6025
val Loss: 0.1698 Acc: 0.9412

Epoch 1/24
----------
train Loss: 0.6411 Acc: 0.7787
val Loss: 0.1981 Acc: 0.9281
·
·
·
Epoch 24/24
----------
train Loss: 0.2812 Acc: 0.8730
val Loss: 0.2647 Acc: 0.9150

Training complete in 1m 7s
Best val Acc: 0.941176

(2)模型评估效果可视化

visualize_model(model_ft)
  • 输出 模型分类效果输出

7.场景2:ConvNet作为固定特征提取器

在这里需要冻结除最后一层之外的所有网络。通过设置requires_grad == Falsebackward()来冻结参数,这样在反向传播backward()的时候他们的梯度就不会被计算。

model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as
# opposed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)

训练和评估

(1)训练模型 在CPU上,与前一个场景相比,这将花费大约一半的时间,因为不需要为大多数网络计算梯度。但需要计算转发。

model_conv = train_model(model_conv, criterion, optimizer_conv,
                         exp_lr_scheduler, num_epochs=25)
  • 输出
Epoch 0/24
----------
train Loss: 0.6400 Acc: 0.6434
val Loss: 0.2539 Acc: 0.9085
·
·
·
Epoch 23/24
----------
train Loss: 0.2988 Acc: 0.8607
val Loss: 0.2151 Acc: 0.9412

Epoch 24/24
----------
train Loss: 0.3519 Acc: 0.8484
val Loss: 0.2045 Acc: 0.9412

Training complete in 0m 35s
Best val Acc: 0.954248

(2)模型评估效果可视化

visualize_model(model_conv)

plt.ioff()
plt.show()

完整代码

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()  # interactive mode
# 加载数据
# 训练集数据扩充和归一化
# 在验证集上仅需要归一化
# 字典形式   数据处理
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),  # 随机裁剪一个area然后再resize
        transforms.RandomHorizontalFlip(),  # 随机水平翻转
        transforms.ToTensor(),
        # ToTensor()将shape为(H, W, C)的nump.ndarray或img转为shape为(C, H, W)的tensor,其将每一个数值归一化到[0,1],其归一化方法比较简单,直接除以255即可。
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        # 上面先将输入归一化到(0,1),再使用公式"(x-mean)/std",将每个元素分布到(-1,1),也就是标准化
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),  # 依据给定的size从中心裁剪
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'data/hymenoptera_data'
# ImageFolder是一个通用的数据加载器
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
# num_workers(int, optional)这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程(默认为0)。
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                              shuffle=True, num_workers=4)
               for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes  # 根据分的文件夹的名字来确定的类别

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


# 可视化部分图像数据
def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))  # 转置
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)  # clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min。
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# 训练模型
'''
@:param
model:要训练的模型
criterion:损失函数
optimizer:优化函数
scheduler:来自 torch.optim.lr_scheduler的学习速率调整类的对象(LR scheduler object)。
num_epochs:训练次数
'''


# 编写一个通用函数来训练模型。下面将说明: * 调整学习速率 * 保存最好的模型
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()  # 返回当前时间的时间戳

    best_model_wts = copy.deepcopy(model.state_dict())  # 复制模型的参数
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # 每个epoch都有一个训练和验证阶段
        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()  # 会调整lr
                model.train()  # 作用是启用batch normalization和drop out。
            else:
                model.eval()  # 测试过程中会使用model.eval(),这时神经网络会沿用batch normalization的值,并不使用drop out。

            running_loss = 0.0
            running_corrects = 0

            # 迭代数据.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 零参数梯度
                optimizer.zero_grad()

                # 前向
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs,
                                         1)  # dim是max函数索引的维度0/1,0是每列的最大值,1是每行的最大值.max返回的是两个值,一个是每一行最大值的tensor组,另一个是最大值所在的位置
                    print('_:{}'.format(_))
                    print('preds:'.format(preds))
                    print('outputs:{}'.format(outputs))
                    print('outputs.data:{}'.format(outputs.data))
                    loss = criterion(outputs, labels)
                    print('loss:{}'.format(loss))
                    # 后向+仅在训练阶段进行优化
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # 统计
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # 深度复制mo
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # 加载最佳模型权重
    model.load_state_dict(best_model_wts)
    return model


# 可视化模型的预测结果
# 一个通用的展示少量预测图片的函数
def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images // 2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)


if __name__ == '__main__':
    # 获取一批训练数据
    inputs, classes = next(iter(dataloaders['train']))

    # 批量制作网格
    out = torchvision.utils.make_grid(inputs)

    imshow(out, title=[class_names[x] for x in classes])

    # 迁移学习场景1:微调ConvNet
    # 加载预训练模型并重置最终完全连接的图层。
    model_ft = models.resnet18(pretrained=True)  # 加载预训练模型resnet18,如果pretrained=False或者为不带参数表示只导入网络结构,不导入参数
    # model_ft即为含训练好参数的残差网络
    # 得到最后一个全连接的输入维度,num_ftrs=512
    num_ftrs = model_ft.fc.in_features
    ## 将最后一个全连接由(512, 1000)改成(512, 2)
    model_ft.fc = nn.Linear(num_ftrs, 2)
    # 将模型放到GPU
    model_ft = model_ft.to(device)

    criterion = nn.CrossEntropyLoss()

    # 观察所有参数都正在优化
    optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

    # lr_scheduler是所有学习率改变策略的基类
    # lr_scheduler提供了基于多种epoch数目调整学习率的方法
    # step_size为int型,表示学习衰减期,指几个epoch衰减一次,gamma为学习衰减的乘积因子
    # 每7个epoch衰减0.1倍
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
    # 训练模型
    model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                           num_epochs=25)
    # 模型评估效果可视化
    visualize_model(model_ft)

    # 迁移学习场景2:ConvNet作为固定特征提取器
    # 在这里需要冻结除最后一层之外的所有网络。通过设置requires_grad == Falsebackward()来冻结参数,这样在反向传播backward()的时候他们的梯度就不会被计算。
    model_conv = torchvision.models.resnet18(pretrained=True)
    for param in model_conv.parameters():
        param.requires_grad = False

    # Parameters of newly constructed modules have requires_grad=True by default
    num_ftrs = model_conv.fc.in_features
    model_conv.fc = nn.Linear(num_ftrs, 2)

    model_conv = model_conv.to(device)

    criterion = nn.CrossEntropyLoss()

    # Observe that only parameters of final layer are being optimized as
    # opposed to before.
    optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
    # 模型训练
    model_conv = train_model(model_conv, criterion, optimizer_conv,
                             exp_lr_scheduler, num_epochs=25)
    # 模型评估效果可视化
    visualize_model(model_conv)

    plt.ioff()
    plt.show()

参考文章

https://www.cnblogs.com/ttweixiao-IT-program/p/11972212.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值