基于梯度法的条纹方向图求解

一、背景

条纹方向(Fringe Orientation)包含着干涉条纹图自动处理所需的重要信息,是干涉条纹图的重要特征。在高精度变形测量和高可靠的损伤检测技术中,都需要首先得到高精度的局部条纹方向(Local Fringe Orientation)。有学者提出了一种基于统计滤波技术的单幅干涉条纹图恢复相位技术,它首先也要得到高精度的条纹方向图。求取条纹方向图的方法有很多种,本文主要介绍梯度法

二、梯度法原理

梯度方法是求取方向图比较简单直接的方法,其基本思想如下:

首先,用 Sobel、 Prewitt、 Roberts 等梯度算子与条纹图像卷积,获得梯度矢量场 G x + i G y {{G}_{x}}+i{{G}_{y}} Gx+iGy

然后,对梯度场做加法平滑,求取条纹方向。但如果直接对梯度场做加法平滑会有问题:将梯度矢量 G x + i G y {{G}_{x}}+i{{G}_{y}} Gx+iGy表示为极坐标 r e i θ r{{e}^{i\theta }} reiθ形式,若直接对梯度场做加法平滑,显而易见, r e i θ r{{e}^{i\theta }} reiθ与其对称矢量 r e i ( θ + π ) r{{e}^{i(\theta +\pi )}} rei(θ+π)会互相抵消。

为了避免这种情况,在平滑时不直接对梯度矢量做加法,而是对梯度矢量的平方 r 2 e i 2 θ {{r}^{2}}{{e}^{i2\theta }} r2ei2θ做加法平滑,这样 r 2 e i 2 θ {{r}^{2}}{{e}^{i2\theta }} r2ei2θ与其对称矢量的平方 r 2 e i 2 ( θ + π ) {{r}^{2}}{{e}^{i2(\theta +\pi )}} r2ei2(θ+π)不再互相抵消。

考虑图像上的一点 f ( i , j ) f\left( i,j \right) f(i,j)及其半径为r的邻域S,则S内所有梯度矢量平方之和可表示为:

V s = ∑ j ∈ S r j 2 e i 2 θ j (1) {{V}_{s}}=\sum\limits_{j\in S}{{{r}_{j}}^{2}{{e}^{i2{{\theta }_{j}}}}} \tag{1} Vs=jSrj2ei2θj(1)

V s = V x + i V y {{V}_{s}}={{V}_{x}}+i{{V}_{y}} Vs=Vx+iVy,则

V y = ∑ ( m , n ) ∈ S 2 G x ( m , n ) G y ( m , n ) (2) {{V}_{y}}=\sum\limits_{(m,n)\in S}{2{{G}_{x}}(m,n)}{{G}_{y}}(m,n)\tag{2} Vy=(m,n)S2Gx(m,n)Gy(m,n)(2)

V x = ∑ ( m , n ) ∈ S ( G 2 x ( m , n ) − G 2 y ( m , n ) ) (3) {{V}_{x}}=\sum\limits_{(m,n)\in S}{({{G}^{2}}_{x}(m,n)-}{{G}^{2}}_{y}(m,n))\tag{3} Vx=(m,n)S(G2x(m,n)G2y(m,n))(3)

则窗口S中心像素的方向为:

θ ( x , y ) = 1 2 arctan ⁡ [ ∑ ( m , n ) ∈ S 2 G x ( m , n ) G y ( m , n ) ∑ ( m , n ) ∈ S ( G 2 x ( m , n ) − G 2 y ( m , n ) ) ] ± π 2 (4) \theta (x,y)=\frac{1}{2}\arctan \left[ \frac{\sum\limits_{(m,n)\in S}{2{{G}_{x}}(m,n)}{{G}_{y}}(m,n)}{\sum\limits_{(m,n)\in S}{({{G}^{2}}_{x}(m,n)-}{{G}^{2}}_{y}(m,n))} \right]\pm \frac{\pi }{2}\tag{4} θ(x,y)=21arctan(m,n)S(G2x(m,n)G2y(m,n))(m,n)S2Gx(m,n)Gy(m,n)±2π(4)

根据以上分析,总结梯度方法的具体步骤如下:

(1)对干涉条纹图进行平滑处理,减小噪声影响。可以多次用小窗口( 3×3或 5×5)进行滤波,直到满意为止。

(2)对平滑处理后的条纹图像用Sobel等梯度算子求出梯度矢量场,也可选用 Marr-Hildreth 算子,它具有较好的抗噪声能力,但相应的计算复杂度增加。

(3)对梯度矢量场用式(4)计算每一点条纹方向。窗口 S 的大小需要根据条纹的疏密做适当变化。

三、获取条纹方向图

现有如下图所示的干涉条纹图,

在这里插入图片描述

图 1 干涉条纹图

根据上述公式,求解得到的条纹方向图如下图所示。
在这里插入图片描述

图 2 条纹方向图

四、资源获取

上述演示实例,可从以下链接处获取:

https://download.csdn.net/download/qq_36584460/85019966


如有疑问,可私信交流讨论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简单光学

您的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值