一、波的干涉原理
当介质中同时存在几列波时,每列波能保持各自的传播规律而不互相干扰。在波的重叠区域里各点振动的物理量等于各列波在该点引起的物理量的矢量和,这就是波的叠加原理。
设S1和S2为两相干波源,如图1所示,它们的振动方程为
y
1
=
A
1
cos
(
ω
t
+
φ
1
)
{{y}_{1}}={{A}_{1}}\cos (\omega t+{{\varphi }_{1}})
y1=A1cos(ωt+φ1)
y 2 = A 2 cos ( ω t + φ 2 ) {{y}_{2}}={{A}_{2}}\cos (\omega t+{{\varphi }_{2}}) y2=A2cos(ωt+φ2)
由这两个波源发出的两列波在同一理想介质中传播后相遇,现分析相遇区域中任意一点P的振动合成结果。
若P点到S1和S2的距离分别为r1和r2,则P点两个分振动为
y 1 = A 1 cos ( ω t − 2 π λ r 1 + φ 1 ) {{y}_{1}}={{A}_{1}}\cos (\omega t-\frac{2\pi }{\lambda }{{r}_{1}}+{{\varphi }_{1}}) y1=A1cos(ωt−λ2πr1+φ1)
y 2 = A 2 cos ( ω t − 2 π λ r 2 + φ 2 ) {{y}_{2}}={{A}_{2}}\cos (\omega t-\frac{2\pi }{\lambda }{{r}_{2}}+{{\varphi }_{2}}) y2=A2cos(ωt−λ2πr2+φ2)
P点同时参与了这两个同频率、同方向的简谐运动。P点的合振动仍为简谐运动,合振动的方程为
y
=
y
1
+
y
2
=
A
cos
(
ω
t
+
φ
0
)
y={{y}_{1}}+{{y}_{2}}=A\cos (\omega t+{{\varphi }_{0}})
y=y1+y2=Acos(ωt+φ0)
P点合振动的振幅由下式给出:
A 2 = A 1 2 + A 2 2 + 2 A 1 A 2 cos Δ φ {{A}^{2}}={{A}_{1}}^{2}+{{A}_{2}}^{2}+2{{A}_{1}}{{A}_{2}}\cos \Delta \varphi A2=A12+A22+2A1A2cosΔφ
因波的强度正比于振幅的二次方,合成波的强度为
I = I 1 + I 2 + 2 I 1 I 2 cos Δ φ I={{I}_{1}}+{{I}_{2}}+2\sqrt{{{I}_{1}}{{I}_{2}}}\cos \Delta \varphi I=I1+I2+2I1I2cosΔφ
式中, Δ φ \Delta \varphi Δφ 为P点两个分振动的相位差,即
Δ φ = ( φ 2 − φ 1 ) − 2 π λ ( r 2 − r 1 ) \Delta \varphi =\left( {{\varphi }_{2}}-{{\varphi }_{1}} \right)-\frac{2\pi }{\lambda }\left( {{r}_{2}}-{{r}_{1}} \right) Δφ=(φ2−φ1)−λ2π(r2−r1)
式中, ( φ 2 − φ 1 ) \left( {{\varphi }_{2}}-{{\varphi }_{1}} \right) (φ2−φ1)为两相干波源的相位差; ( r 2 − r 1 ) \left( {{r}_{2}}-{{r}_{1}} \right) (r2−r1)为两列波自波源传到P点的几何路程之差,称为波程差,用 δ \delta δ表示; 2 π λ ( r 2 − r 1 ) \frac{2\pi }{\lambda }\left( {{r}_{2}}-{{r}_{1}} \right) λ2π(r2−r1)为两列波之间因波程差而产生的相位差,对于空间任一给定的P点,它是常量。
由以上讨论可知,两个频率相同、振动方向相同、相位差恒定的相干波源所发出的两列相干波叠加的结果,其合振幅A和强度I将在空间形呈一种稳定的分布,即某些点处振动始终加强,而某些点处振动始终减弱,这种现象为波的干涉现象。
对于满足
Δ φ = ( φ 2 − φ 1 ) − 2 π λ ( r 2 − r 1 ) = ± 2 k π , k = 0 , 1 , 2 ⋯ \Delta \varphi =\left( {{\varphi }_{2}}-{{\varphi }_{1}} \right)-\frac{2\pi }{\lambda }\left( {{r}_{2}}-{{r}_{1}} \right)=\pm 2k\pi ,k=0,1,2\cdots Δφ=(φ2−φ1)−λ2π(r2−r1)=±2kπ,k=0,1,2⋯
的空间各点,振幅和强度最大,振动始终加强,称为干涉相长。
对于满足
Δ φ = ( φ 2 − φ 1 ) − 2 π λ ( r 2 − r 1 ) = ± ( 2 k + 1 ) π , k = 0 , 1 , 2 ⋯ \Delta \varphi =\left( {{\varphi }_{2}}-{{\varphi }_{1}} \right)-\frac{2\pi }{\lambda }\left( {{r}_{2}}-{{r}_{1}} \right)=\pm (2k+1)\pi ,k=0,1,2\cdots Δφ=(φ2−φ1)−λ2π(r2−r1)=±(2k+1)π,k=0,1,2⋯
的空间各点,振幅和强度最小,振动始终减弱,称为干涉相消。
若两个相干波源的初相位相同,即 φ 2 = φ 1 {{\varphi }_{2}}={{\varphi }_{1}} φ2=φ1,上述干涉加强或减弱的条件可简化为
二、仿真验证
2.1 频率不同的波的叠加
首先,模拟得到两列单色平面波(此时频率不相同):
两列波进行叠加后,所得结果如下图所示:
合成波的光强曲线如下图所示:
2.2 频率相同波的叠加
模拟频率相同(初始相位也相同)的两列波,如下图所示
此时两列波进行叠加后,所得结果如下图所示
三、资源获取
可下载相关资源进行验证,可进一步验证波的频率大小,初始相位大小对波叠加的影响。
下载地址:
https://download.csdn.net/download/qq_36584460/85053520
资源包含以下内容:
不同频率波的叠加.m
相同频率波的叠加.m