基于有限差分的傅里叶变换与离散余弦变换的相位解包裹算法

一、背景

Juan等人提出了TIE相位展开算法的数学推导,通过建立离散的泊松方程实现相位解包裹。

求解泊松方程输入时需要更多次数傅里叶变换操作,本文拟采用有限差分法(FD)策略求取泊松方程输入。当确定泊松方程输入,可以利用基于傅里叶变换(FFT)的方法或离散余弦变换(DCT)的方法求解泊松方程的输出。

详细的理论推导,可参考文献[1]

二、仿真实验验证

在这里插入图片描述

图 1 相位解包裹仿真设计[1]

模拟得到的包裹相位如下图所示:

在这里插入图片描述

图 2 仿真的包裹相位

在这里插入图片描述

图 3 解包裹相位

以上结果,便完成了对该文献[1]的复现!

三、实际实验验证

现有一实验得到的包裹相位,如下图所示:

在这里插入图片描述

图 4 实验得到的包裹相位

在实际实验中,执行有限差分法-离散余弦变换相位解包裹,用时1.041384 秒;有限差分法-傅里叶变换法相位解包裹,用时2.499574 秒。两种方法解包裹相位如下图所示:

在这里插入图片描述

图 5 两种算法得到的解包裹相位

三、参考文献

[1] 何周旋. 基于相位的线结构光复杂形面测量方法研究[D]: 西安工业大学, 2021.

四、资源获取

上述所有资源可从以下链接处获取:

https://download.csdn.net/download/qq_36584460/85086544

资源包含以下内容:

yxcf_flybh.m (有限差分法-傅里叶变换法函数)
yxcf_lsyxbh.m(有限差分法-离散余弦变换函数)
包裹相位图.m(实验包裹数据)
基于有限差分的FFT与DCT的相位解包裹算法- 实际实验.m
基于有限差分的FFT与DCT的相位解包裹算法- 实际实验-GBK格式.m(防中文注释乱码)
基于有限差分的FFT与DCT的相位解包裹算法-仿真实验.m
基于有限差分的FFT与DCT的相位解包裹算法-仿真实验-GBK格式.m(防中文注释乱码)
仿真实验-参考文献.pdf

更多解包裹算法,可关注博主的相关专栏。

如有任何疑问,可私信博主交流讨论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简单光学

您的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值