一、背景
Juan等人提出了TIE相位展开算法的数学推导,通过建立离散的泊松方程实现相位解包裹。
求解泊松方程输入时需要更多次数傅里叶变换操作,本文拟采用有限差分法(FD)策略求取泊松方程输入。当确定泊松方程输入,可以利用基于傅里叶变换(FFT)的方法或离散余弦变换(DCT)的方法求解泊松方程的输出。
详细的理论推导,可参考文献[1]
二、仿真实验验证
模拟得到的包裹相位如下图所示:
以上结果,便完成了对该文献[1]的复现!
三、实际实验验证
现有一实验得到的包裹相位,如下图所示:
在实际实验中,执行有限差分法-离散余弦变换相位解包裹,用时1.041384 秒;有限差分法-傅里叶变换法相位解包裹,用时2.499574 秒。两种方法解包裹相位如下图所示:
三、参考文献
[1] 何周旋. 基于相位的线结构光复杂形面测量方法研究[D]: 西安工业大学, 2021.
四、资源获取
上述所有资源可从以下链接处获取:
https://download.csdn.net/download/qq_36584460/85086544
资源包含以下内容:
yxcf_flybh.m (有限差分法-傅里叶变换法函数)
yxcf_lsyxbh.m(有限差分法-离散余弦变换函数)
包裹相位图.m(实验包裹数据)
基于有限差分的FFT与DCT的相位解包裹算法- 实际实验.m
基于有限差分的FFT与DCT的相位解包裹算法- 实际实验-GBK格式.m(防中文注释乱码)
基于有限差分的FFT与DCT的相位解包裹算法-仿真实验.m
基于有限差分的FFT与DCT的相位解包裹算法-仿真实验-GBK格式.m(防中文注释乱码)
仿真实验-参考文献.pdf
更多解包裹算法,可关注博主的相关专栏。
如有任何疑问,可私信博主交流讨论。