【图像超分】论文精读:Single Image Super-Resolution via a Holistic Attention Network(HAN)

本文提出了一种整体注意力网络(HAN)用于单图像超分辨率任务,解决了现有方法中忽略层间相关性和信息纹理丢失的问题。HAN包含层注意模块(LAM)和通道空间注意模块(CSAM),两者协同工作,强化了CNN的表示能力。LAM考虑了多尺度层的特征相关性,而CSAM学习通道和空间位置的相互依赖。实验表明,HAN在超分辨率结果上优于当前先进方法,尤其是在细节恢复和纹理保真度方面表现突出。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值