【图像超分】论文精读:“Zero-Shot“ Super-Resolution using Deep Internal Learning(ZSSR)

本文介绍了零样本超分辨率(ZSSR)技术,这是一种使用深度内部学习的无监督超分辨率方法。传统的深度学习超分辨率算法受限于预定义的训练条件,但在实际低分辨率图像中效果不佳。ZSSR通过内部递归和图像特定的卷积神经网络(CNN),在测试时适应每张图像的独特设置,从而在非理想条件下展现出优越性能。这种方法在处理真实世界的旧照片、噪声图像等时,超越了基于SotA CNN的超分辨率方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)


前言

论文题目:“Zero-Shot” Super-Resolution using Deep Internal Learning —— 使用深度内部学习的“零镜头”超分辨率

项目地址(包含论文、代码、对比效果等):http://www.wisdom.weizmann.ac.il/∼vision/zssr/

CVPR 2018!第一个CNN无监督超分算法!

Abstract

在过去的几年里,深度学习导致了超分辨率 (SR) 性能的大幅飞跃。然而,作为监督,这些 SR 方法仅限于特定的训练数据,其中从高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值