(ZSSR)CVPR-2018:“Zero-Shot” Super-Resolution using Deep Internal Learning

摘要

在监督学习下,SR方法仅限于特定的训练数据,其中从其高分辨率(HR)获取低分辨率(LR)图像是预先确定的,没有任何分散注意力的伪影(例如,传感器噪声、图像压缩、非理想PSF等)。但真实的LR图像很少遵守这些限制。

本文介绍了“Zero-Shot”SR,它利用了深度学习,但不依赖于预先的训练。利用单个图像中信息的内部重现性,并在测试时对仅从输入图像本身提取的示例训练特定于图像的小CNN。因此,它可以使自己适应每个图像的不同设置。这允许在采集过程未知或不理想的情况下,对真实旧照片、噪声图像、生物数据和其他图像执行SR。

这是第一个基于CNN的无监督SR方法。

一、介绍

外部监督的方法在满足训练条件的数据上表现非常出色,但一旦不满足这些条件,其性能就会显著下降。

"Zero-Shot"SR方法(ZSSR):它利用了深度学习的能力,而不依赖任何先验图像示例或先验训练。利用单个图像中信息的内部重现性,并在测试时对仅从LR输入图像本身提取的示例(即内部自我监控)训练特定于图像的小CNN。因此,CNN可以适应每个图像的不同设置。这允许在获取过程未知且不理想的真实图像上执行SR。

在单个图像的尺度上重复出现小块信息(例如,小块图像),是自然图像的一个非常强大的特性,形成了许多无监督图像增强方法的基础。

有些无监督方法可以利用图像特定信息,但它们通常依赖于使用K-最近邻搜索的预定义大小(通常为5×5)的小图像块的简单Eucledian similarity。因此,它们不能很好地推广到LR图像中不存在的patch,不能很好地推广到新的隐式学习相似性度量,也不能很好地适应图像内部重复结构的非均匀大小。

我们的特定图像(image-specific)的CNN利用图像特定信息的跨尺度内部重现能力,不受上述基于patch的方法的限制。训练CNN从LR图像及其缩小版本(自我监督)推断复杂的图像特定HR-LR关系。然后,将这些学习到的关系应用于LR输入图像,以生成HR输出。

ZSSR方法不需要任何侧面信息/属性或任何附加图像。

贡献:

(1)是第一个基于CNN的无监督SR方法。

(2)可以处理非理想成像条件,以及各种图像和数据类型(即使是第一次遇到)。

(3)不需要预训练,可以使用少量的计算资源运行。

(4)适用于任何尺寸的SR,理论上也适用于任何长宽比。

(5)可以适应已知和未知的成像条件(在测试时)。

二、ZSSR方法基本原理

自然图像具有很强的内部数据重复性(已被证明是正确的)。例如,小图像块(例如,5×5、7×7)在单个图像内重复多次,既在同一尺度内重复,也在不同的图像尺度上重复。

三、Image-Specific CNN

在从测试图像本身提取的示例上训练CNN。此类示例通过缩小LR图像I的尺度来获得,以生成其自身的较低分辨率版本Is(s是所需的SR比例因子)。

使用相对较轻的CNN,并训练它,使其从Is重建I(图(b)的顶部)。然后,将得到的经过训练的CNN应用于测试图像I,现在使用I作为网络的LR输入,以构建所需的HR输出Is(图(b)的底部)。 

注意,经过训练的CNN是完全卷积的,因此可以应用于不同大小的图像。

 由于我们的“训练集”只包含一个实例(测试图像),因此我们在I上使用数据扩充来提取更多LR-HR示例对进行训练。 

将测试图像I缩小到其自身的许多较小版本(I=I_0,\: I_1,\:...\:,I_n)来完成增强。他们充当HR监督,被称为“HR fathers”。然后,将每个“HR fathers”都缩小s倍,以获得“LR sons”,这些“LR sons”构成输入训练实例。生成的训练集由许多特定于图像的LR-HR示例对组成。然后,网络在这些示例对上随机训练。通过旋转、翻转进一步增强数据集。

个人理解:训练集中的LR-HR对就是由HR-fathers和HR-sons组成的。

为了鲁棒性,以及允许从非常小的LR图像获得较大的SR比例因子,逐步执行SR。

在每个中间尺度s_i中,将生成的SR图像及其缩小/旋转版本添加到逐渐增长的训练集中,作为新的HR fathers。通过下一个渐进的比例因子s_{i+1}缩小这些HR fathers(以及之前较小的“HR示例”),来生成新的LR-HR训练示例对。重复此操作,直到达到所需的分辨率。

3.1 Architecture & Optimization

受监督的CNN在大量不同的外部LR-HR图像示例集合上进行训练,必须在他们学习的权重中捕获所有可能的LR-HR关系的大量多样性。因此,这些网络往往非常深入和复杂。但单个图像中LR-HR关系的多样性要小得多,因此可以通过更小更简单的图像特定网络进行编码。

1、架构

使用一个简单的、完全卷积的网络,有8个隐藏层,每个层有64个通道。在每一层上使用ReLU激活。网络输入被插值到输出大小。只学习插值LR与其HR parent之间的残差。

2、优化

为了加速训练阶段并使运行时独立于测试图像I的大小。在每次迭代中,从随机选择的father-son示例对中随机选取固定大小的裁剪。裁剪通常为128×128(除非采样图像对较小)。在每次训练迭代中对LR-HR示例对进行采样的概率设置为非均匀的,并且与HR-father的大小成比例。尺寸比(HR-father图像和测试图像I之间)越接近1,其被采样的概率越高。

使用了几何自集成的方法(该方法对测试图像I进行8次旋转、翻转生成8个不同的输出,然后将其组合)。取这8项输出的中位数,而不是它们的平均值。进一步将其与反投影技术相结合,以便8个输出图像中的每一个都经过多次反投影迭代,最后,中值图像也通过反投影进行校正。

3.2 Adapting to the Test Image

在实践中,由于图像退化是不确定的,无法针对所有可能的图像退化方式进行训练。并且,单个受监督的CNN不可能在所有可能的退化类型下都表现良好。

ZSSR网络可以在测试时适应测试图像的特定退化。

可以在测试时从用户处接收以下参数:

(1)所需的下采样核(默认为双三次核)。

(2)所需的SR比例因子s。

(3)所需的渐进式尺度增大的数量(默认值为6)。

(4)是否强制LR和HR图像之间的反向投影(默认为“Y”)。

(5)是否从LR测试图像中提取的每个LR- HR示例对的LR子图像上添加“噪音”(默认为“否”)。

图像特定的信息倾向于跨尺度重复,而噪声伪影却不会。向LR-son(而不是HR-father)添加合成噪声,可以教会网络忽略不相关的跨尺度信息(噪声),同时学习提高相关信息(信号细节)的分辨率。

四、实验和结果

4.1 The ‘Ideal’ Case

  • 表1显示,ZSSR取得了与外部监督方法有竞争力的结果。在无监督SR体系中,ZSSR的表现远远优于领先的SelfExSR方法

在内部重复结构很强的图像中,ZSSR往往超过VDSR,有时也超过EDSR+, 如下图:

观察下图,图像中的一些像素(绿色标记的)从内部学习的数据递归(ZSSR)中受益更多,而其他像素(红色标记的)从外部学习的数据(EDSR+)中受益更多。 内部方法(ZSSR)在信息重复率高的图像区域最占优势,特别是在模式非常小(分辨率非常低)的区域,比如建筑顶部的小窗户。这些微小的图案会在同一幅图像的其他地方(在不同的位置/比例)找到它们自己的更大(高分辨率)的例子。

这表明,通过在一个单一的计算框架中结合内部学习和外部学习的力量,可能有进一步改进SR的性能。

4.2 The ‘Non-ideal’ Case

在(i)非理想降尺度核(偏离双三次核)和(ii)低质量LR图像(例如,由于噪声、压缩伪影等)这种非理想情况下,图像特定的ZSSR比SotA(最新技术) SR方法提供了更好的结果。               

(A) 非理想降尺度核

本实验的目的是测试更真实的模糊核,并对结果进行数值评估。

使用随机(但大小合理)高斯核对HR图像进行降尺度处理。对于每个图像,选择其降尺度核的协方差矩阵∑,使其在每个轴上具有随机角度θ和随机长度\lambda _1\lambda _2

s为HR-LR降尺度系数,因此,每个LR图像由不同的随机核进行了下采样。

 考虑了两种应用ZSSR的情况:(i)未知降尺度内核的更真实场景。对于这种模式,使用[14](Blind-SR)直接从测试图像评估内核,并将其提供给ZSSR。在[14]中,通过寻找一个非参数降尺度核来估计未知SR核,该降尺度核最大化LR测试图像中各个尺度上的patch的相似性。(ii)将ZSSR与用于创建LR图像的真正降尺度内核一起应用。这样的场景对于由具有已知规格的传感器获得的图像可能有用。

 没有一种外部监督的方法能够从了解测试图像的模糊核(无论是估计的还是真实的)中获益,因为它们是针对特定的核进行训练和优化的。

(B)低质量的LR图像

在这个实验中,测试了不同类型质量退化的图像。

(i)高斯噪声[σ=0.05],(ii)斑点噪声[σ=0.05],(iii)JPEG压缩[quality=45(根据MA TLAB标准)]。表3显示,ZSSR对未知退化类型具有鲁棒性,而这些通常会破坏SR监督方法,使双三次插值优于当前的SotA SR方法!

 

五、总结

(1)利用了深度学习的能力,不依赖任何外部示例或预训练。

(2)CNN在测试时对仅从LR测试图像中提取的内部示例进行训练。 

                                                                                                                                                                                                                                                                             

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值