文章目录
前言
论文题目:Variational Denoising Network: Toward Blind Noise Modeling and Removal —— 变分去噪网络:面向盲噪声建模和去除
论文地址(包含补充材料等):Variational Denoising Network: Toward Blind Noise Modeling and Removal
论文源码:https://github.com/zsyOAOA/VDNet
NeurIPS 2019!真实世界图像盲去噪,变分去噪网络VDNet!
Abstract
由于真实图像的采集过程复杂,盲图像去噪是计算机视觉中一个重要但极具挑战性的问题。在这项工作中,我们提出了一种新的变分推理方法,该方法将噪声估计和图像去噪集成到一个独特的贝叶斯框架中,用于盲图像去噪。具体来说,深度神经网络参数化的近似后验是通过将内在干净图像和噪声方差作为以输入噪声图像为条件的潜在变量来呈现的。该后验为所有相关的超参数提供了明确的参数形式,因此可以很容易地实现盲图像去噪,