迭代(iteration):神经网络在训练数据集上跑一遍
batch size: 每次只使用数据集中的部分样本
注释:由于batch size的提出,两个网络比较性能的时候,若直接比较迭代的次数,这时已经没有什么意义了,因为两个网络的batch size 不一致,因此,又提出了epoch的概念
epoch: 数据集中的所有样本都跑过一遍
若数据集的样本总数是4096,
网络A,经过32次迭代损失函数值足够低 batch size = 256 所有的样本需要4096/256=16次迭代,一个epoch包含16次迭代,因此网络A要经过2个epoch训练
网络B,经过16次迭代损失函数值足够低 batch size = 2048 所有的样本需要4096/2048=2次迭代,一个epoch包含2次迭代,因此网络B要经过8个epoch训练