iteration,batch ,epoch

迭代(iteration):神经网络在训练数据集上跑一遍

batch size: 每次只使用数据集中的部分样本

注释:由于batch size的提出,两个网络比较性能的时候,若直接比较迭代的次数,这时已经没有什么意义了,因为两个网络的batch size 不一致,因此,又提出了epoch的概念

epoch: 数据集中的所有样本都跑过一遍

            若数据集的样本总数是4096,

网络A,经过32次迭代损失函数值足够低      batch size = 256     所有的样本需要4096/256=16次迭代,一个epoch包含16次迭代,因此网络A要经过2个epoch训练

网络B,经过16次迭代损失函数值足够低      batch size = 2048   所有的样本需要4096/2048=2次迭代,一个epoch包含2次迭代,因此网络B要经过8个epoch训练

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值