AI agents系列之全面介绍

随着大型语言模型(LLMs)的出现,人工智能(AI)取得了巨大的飞跃。这些强大的系统彻底改变了自然语言处理,但当它们与代理能力结合时,才真正释放出潜力——能够自主地推理、规划和行动。这就是LLM代理大显身手的地方,它们代表了我们与AI交互以及利用AI的方式的范式转变。

None

来源:letta

这篇博客旨在全面介绍AI代理,深入探讨它们的特征、组件和类型,同时探索它们的演变、挑战和潜在的未来方向。


让我们先了解一下从LLM到AI代理的演变过程。

1. 从LLM到AI代理

LLM应用形式的演变是我们所见过的现代应用中发展最快的之一。

None

来源:mongodb

1.1 传统聊天机器人到LLM驱动的聊天机器人

聊天机器人并不是什么新鲜事物;在生成式AI(Gen AI)这个术语出现之前,你可能就已经在网站上与聊天机器人互动过了。传统聊天机器人与今天的AI驱动的对话代理有着根本的不同。它们通常是这样工作的:

基于启发式的响应:

  • 传统聊天机器人基于规则逻辑(“如果-那么”语句)运行。
  • 仅限于预定义的规则,无法处理复杂或模糊的查询。

固定响应:

  • 响应是静态的、预定义的。
  • 通过检测特定的关键词或短语来触发。
  • 缺乏灵活性和对话深度。

转接人工:

  • 总是有一个“与人工对话”的按钮,用于处理未解决的查询。
  • 人工干预对于处理复杂问题仍然至关重要。

None

来源:mongodb

1.2 LLM驱动聊天机器人的引入

ChatGPT的推出: 2022年11月30日,OpenAI推出了ChatGPT,它由GPT-3.5驱动,是第一个主流的LLM应用。ChatGPT保留了熟悉的聊天机器人界面,但背后是经过大量互联网语料库训练的先进LLM技术。

Transformer架构: GPT(生成式预训练Transformer)基于谷歌在2017年引入的Transformer架构。它使用自注意力机制来分析输入序列,更深入地理解上下文。

LLM的能力: 与传统聊天机器人不同,LLM可以生成类似人类、与上下文相关且新颖的文本。用例包括代码生成、内容创作、增强客户服务等。

局限性:

  • 个性化: 在长时间的对话中难以保持一致的个性化互动。
  • 幻觉: 可以产生在事实上不正确但连贯的响应,基于概率而非经过验证的知识生成输出。

解决局限性的方法:

  • 探索像**检索增强生成(RAG)**这样的技术,以使输出基于可靠的外部数据。
  • 这些进步旨在减少不准确之处,提高LLM驱动系统的稳健性。
1.3 从LLM驱动的聊天机器人到RAG聊天机器人和AI代理

RAG聊天机器人: 检索增强生成(RAG)将外部数据检索与LLM能力相结合,以产生准确且基于上下文的响应。

知识来源:

  • 非参数化知识: 从互联网或专有数据库等外部来源实时检索的数据。
  • 参数化知识: LLM训练中嵌入的知识。

优势: 减少幻觉,提供最新的信息,并确保可验证的响应。

提示工程: 通过引导LLM的推理和输出生成,像上下文学习(单次、少量)、思维链(CoT)和ReAct等技术提高了响应质量。

None

来源:mongodb

AI代理: AI代理是从具有工具、多步规划和推理能力的LLM演变而来的。

工具使用: LLM可以通过分析任务并通过结构化模式(例如JSON)分配参数,调用程序定义的函数或API。

环境: AI代理在迭代执行环境中运行,能够根据反馈进行动态决策和持续适应。

代理系统: 这些是具有自主代理的计算架构,能够集成多个系统组件、做出决策并实现目标。

代理式RAG:

  • 将LLM的推理、工具使用和规划能力与语义信息检索相结合。
  • 能够
    分解任务、执行复杂查询并利用工具解决问题的动态系统。

None

来源:mongodb

从LLM驱动的聊天机器人到RAG聊天机器人和AI代理的转变,代表了向更智能、更适应性强且能够实时解决复杂问题的工具集成系统的转变。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI仙人掌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值