Characteristic AI Agents via Large Language Models

本文介绍了一种新任务——特征人工智能代理,通过大型语言模型(LLM)模拟真实个体,创建了包含106个知名人物的Character100数据集,并设计了自动评估指标。实验评估了LLM在构建个性化聊天机器人方面的性能。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Characteristic AI Agents via Large Language Models》的翻译。

摘要

大型语言模型(LLM)的发展显著提高了聊天机器人系统的性能。许多研究人员致力于开发聊天机器人的特性。虽然已经有使用LLM开发角色驱动聊天机器人的商业产品,但值得注意的是,这一领域的学术研究仍然相对较少。我们的研究重点是通过模拟不同环境中的真实个体,研究LLM在构建特征人工智能代理方面的性能。目前的调查主要集中在扮演简单角色上。为了应对这一研究空白,我们为特征人工智能代理任务创建了一个基准,包括数据集、技术和评估指标。一个名为“Character100”的数据集是为这个基准构建的,它包括维基百科上访问量最大的人,用于语言模型的角色扮演。利用构建的数据集,我们对各种环境下的LLM进行了全面评估。此外,我们还设计了一套用于定量表现评估的自动指标。实验结果强调了LLM在构建特征人工智能代理方面进一步提高能力的潜在方向。该基准可在https://github.com/nuaa-nlp/Character100获得.

1 引言

2 相关工作

3 任务定义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值