天天写算法之Eddy's picture

这个题目,理论上两个算法都可以过,但是prime要好一些,prime适合做稠密图,也就是边多的。表现能力更好。

Kruskal则适合处理稀疏图。
代码如下,有备注:
#include <iostream>
#include<cstdio>
#include<string.h>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 110
#define repf(i,from,to) for(int i =from ; i<=to ; i++)
#define ll long long
int n ;
struct Node{
    double x ,y ;

}nodes[MAX];
double dis[MAX][MAX];
int flag[MAX];
double low[MAX];
double length(double x ,double y)
{
    return sqrt(x*x+y*y);
}
int prim(){
    double sum =0 ;
    memset(flag,0,sizeof(flag));
    int pos = 1 ;
    flag[pos]=1;//标记第一个点,也就是起始点
    for(int i = 1 ; i <=n;i++)
    {
        if(i!=1)
        {
            low[i]=dis[pos][i];//pos这个点到各个点的距离
        }
    }
    for(int i = 1 ; i <n ; i++)//因为开始的时候已经找了1个(初始点),所以这里就需要在访问n-1就可以
    {
        double mini=9999999;
        for(int j = 1 ;  j<=n ; j++)//找一圈自己人
        {
            if(!flag[j]&&mini>low[j])
            {
                mini = low[j];
                pos = j;
            }
        }
        flag[pos]=1;
        sum+=mini;
        //更新能到达的
        for(int j =1 ; j<=n ; j++)
        {
            if(!flag[j]&&low[j]>dis[pos][j])
            {
                low[j]=dis[pos][j];

            }
        }
    }
    printf("%.2lf\n",sum);
}
int main(){
    while(~scanf("%d",&n))
    {
        for(int i = 1 ; i <=n ; i++)
        {
            scanf("%lf%lf",&nodes[i].x,&nodes[i].y);
        }
        for(int i = 1 ; i<=n ; i++)//n^2复杂度计算出所有的距离
        {
            for(int j =1; j<=n ; j++)
            {
                dis[i][j]=length(nodes[i].x-nodes[j].x,nodes[i].y-nodes[j].y);
            }
        }
        prim();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值