Learning deep representations by mutual information estimation and maximization

ICLR18的文章,reference100多,算贡献比较大的文章了。

首先介绍一下本文的预备知识点:

本文主要是涉及了一种数据表征方法,无监督的提取出图片中的高维表征。不进行具体任务的训练。

比如我们进行训练之后,固定好训练完的网络,进行分类,聚类等工作的训练。

创新点:

1:利用了互信息最大化输入与高维表征的关联程度。

2:互信息包含了局部互信息,以及全局互信息

3:使用对抗网络,使得高维表示具有期望先验分布的特性。

4:提出了两种新的衡量表示的方法,MINE(互信息神经预测),NDM(神经依赖衡量)

提出的算法叫DIM(Deep infoMax)

实现上,主要是关注以下两个特点:

一个是互信息最大化,一个是统计约束(期望最后的输出约束于先验分布)

互信息最大化框架:

 

local和global features的这个可以看上图,拿到低层(靠前的)的特征,然后和高层的特征结合。这个结合和我一开始想的还不一样,比如我们提取出来了26*26*128的feature map,这里面相当于128个map,和高层的64的输出结合。所以就是[26,26,128]和[64]结合,文章中的做法是先扩展[64]到[26,26,64],然后concat得到[26,26,192],这样相当于每个high level feature(global feature)和纵向的每个位置的128都结合一下,最后得到26*26个score。这样做直观上的感觉就是想要寻求一下128个local的图中共性的和global相符的特征。(因此文章中出现了根据颜色分类这样的问题,也是可以解释的过去的)

这篇文章的结构看paper感觉不是很明显,看代码之后会更加明了。这里面最重要的一个点就是如何计算这个互信息。

这里就用到了另一个方法Mutual Information Neural Estimation(MINE),下一篇我会介绍,开山之作

整个无监督训练的结构conv(4,1)代表kernel size 4 , stride为1。本质上是对各个层级进行多出的互信息约束。

 

计算loss的代码(需要事先了解MINE的计算方法)

 

class DeepInfoMaxLoss(nn.Module):
    def __init__(self, alpha=0.5, beta=1.0, gamma=0.1):
        super().__init__()
        self.global_d = GlobalDiscriminator()
        self.local_d = LocalDiscriminator()
        self.prior_d = PriorDiscriminator()
        self.alpha = alpha
        self.beta = beta
        self.gamma = gamma

    def forward(self, y, M, M_prime):

        # see appendix 1A of https://arxiv.org/pdf/1808.06670.pdf

        y_exp = y.unsqueeze(-1).unsqueeze(-1)
        y_exp = y_exp.expand(-1, -1, 26, 26)

        y_M = torch.cat((M, y_exp), dim=1)
        y_M_prime = torch.cat((M_prime, y_exp), dim=1)

        Ej = -F.softplus(-self.local_d(y_M)).mean()
        Em = F.softplus(self.local_d(y_M_prime)).mean()
        LOCAL = (Em - Ej) * self.beta

        Ej = -F.softplus(-self.global_d(y, M)).mean()
        Em = F.softplus(self.global_d(y, M_prime)).mean()
        GLOBAL = (Em - Ej) * self.alpha

        prior = torch.rand_like(y)

        term_a = torch.log(self.prior_d(prior)).mean()
        term_b = torch.log(1.0 - self.prior_d(y)).mean()
        PRIOR = - (term_a + term_b) * self.gamma

        return LOCAL + GLOBAL + PRIOR

 

 

 

 

 

 

  • 9
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值