天天写算法之National Treasures

这个题目的问题,我一开始百思不得其解,后来反过来想了想,就是求最少的点,把所有的线都占有了,那么就是最小覆盖问题,最小覆盖=最大匹配,emmmmm:
这个题,我有一个地方很不理解,我们原本就有警卫,那么原本的警卫是怎么处理的?感觉这样做,是直接忽略掉原本有的警卫,然后给出了最大覆盖,那么万一原本的警卫占据了一个有用的位置,那么岂不是没有考虑到?
哦~,还是最大覆盖问题,你再给出的线里面根本不包含这个线,那么也就不用覆盖,因此,这样是说得通的,我们要从最小覆盖的角度去思考,而不应该是从匹配的角度去考虑问题。

代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>

using namespace std;

const int N=2520;

vector<int> vt[N];
int map[60][60],linker[N],vis[N];
int n,m;

int dir[12][2]={{-1,-2},{-2,-1},{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2},{-1,0},{0,1},{1,0},{0,-1}};

int DFS(int u){
    for(int i=0;i<int(vt[u].size());i++){
        int v=vt[u][i];
        if(!vis[v]){
            vis[v]=1;
            if(linker[v]==-1 || DFS(linker[v])){
                linker[v]=u;
                return 1;
            }
        }
    }
    return 0;
}

int Hungary(){
    int u,ans=0;
    memset(linker,-1,sizeof(linker));
    for(u=1;u<=n*m;u++){
        memset(vis,0,sizeof(vis));
        if(DFS(u))
            ans++;
    }
    return ans;
}

int main(){

    //freopen("input.txt","r",stdin);

    int cases=0;
    while(~scanf("%d%d",&n,&m)){
        if(n==0 && m==0)
            break;
        for(int i=0;i<=n*m;i++)
            vt[i].clear();
        memset(map,-1,sizeof(map));
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                scanf("%d",&map[i][j]);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                if(map[i][j]!=-1){
                    for(int k=0;k<12;k++)
                        if((map[i][j]>>k) & 1){
                            int x=i+dir[k][0];
                            int y=j+dir[k][1];
                            if(x>=1 && x<=n && y>=1 && y<=m && map[x][y]!=-1){
                                vt[(i-1)*m+j].push_back((x-1)*m+y);
                                vt[(x-1)*m+y].push_back((i-1)*m+j);
                            }
                        }
                }
        printf("%d. %d\n",++cases,Hungary()/2);
    }
    return 0;
}
/*
    题意:在一个n*m的格子中,每个格子有一个数值,-1表示空,其余表示财宝。每个财宝的数值转换成二进制数,
12个二进制位上数值,从右到左,第i个位是1表示图上相应第i序号位置需要有警卫。所有的要求位置有警卫财宝才安全。
财宝可以被警卫替换。问至少需要替换多少财宝才能保证所有财宝的安全。
    方法:需要警戒位置是财宝的讯号对财宝位置讯号建边。由于警戒位置与财宝位置的横纵坐标奇偶相反,可以建得二分图。
对于所建图,根据题意就是找出最少的顶点使得剩余顶点覆盖所有的边,即最小顶点覆盖数为答案。

    最大匹配:二分图G中,找出边数最大的子图M,使得M中各条边均无公共顶点,则M为最大匹配。可用匈牙利算法求得。
    最小顶点覆盖:二分图G中,找出顶点数最少的子图M,使得M中所有的点可以覆盖G中所有的边(一个顶点可以覆盖与它相连的边)。
    最小顶点覆盖=最大匹配
*/

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页