本文是LLM系列文章,针对《Efficient LLM Scheduling by Learning to Rank》的翻译。
摘要
在大型语言模型(LLM)推理中,LLM请求的输出长度通常被视为先验未知。因此,大多数LLM服务系统采用简单的先到先服务(FCFS)调度策略,导致前端(HOL)阻塞,降低吞吐量和服务质量。在本文中,我们重新审视了这一假设——我们表明,尽管预测每个请求的确切生成长度是不可行的,但通过学习排名,可以预测一批请求中输出长度的相对排名。排名信息为安排请求提供了宝贵的指导。基于这一认识,我们开发了一种用于LLM推理和服务的新型调度器,该调度器可以比现有方法更好地近似最短作业优先(SJF)调度。我们将此调度器与最先进的LLM服务系统集成在一起,并在几个重要应用中显示出显著的性能提升:聊天机器人服务的延迟降低了2.8倍,合成数据生成的吞吐量提高了6.5倍。我们的代码在https://github.com/hao-ai-lab/vllm-ltr.git上可用。