人工智能
机器学习、深度学习、Pytorch、Tensorflow等
SuperWiwi
这个作者很懒,什么都没留下…
展开
-
《Python深度学习》文章地图
1.文章地图官方链接第1章 什么是深度学习人工智能、机器学习、深度学习简介及相互关系第2章 神经网络的数学基础神经网络的数据表示——张量神经网络的“引擎”:基于梯度的优化第3章 神经网络入门Python深度学习——神经网络剖析IMDB数据集——文本情绪二分类路透社数据集——新闻主题多分类波士顿房价数据集——预测房价第4章 机器学习基础Python深度学习——机器学习基础损失函数总结(更新ing)第5章 深度学习用于计算机原创 2020-05-11 10:07:15 · 197 阅读 · 0 评论 -
Tensorflow学习笔记
文章目录1.基本概念2.创建图,启动图3.变量的使用4.fetch和feed5.用tf来拟合线性函数的k和b6.Saver保存读取7.变量作用域1.基本概念Tensorflow是一个编程系统,使用图(graphs)来表示计算任务,图(graphs)中的节点称之为op(operation),一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor。Tensor看作是一个n维的数组或列表。图必须在会话(Session)里被启动。使用图(graphs)来表示计算任务在被称之为会话(Ses原创 2020-07-30 22:20:31 · 435 阅读 · 0 评论 -
Python深度学习——理解RNN
文章目录序列数据使用什么样的神经网络用Numpy代码理解RNN前向传递序列数据使用什么样的神经网络密集连接网络和卷积神经网络)都有一个主要特点,那就是它们都没有记忆。它们单独处理每个输入,在输入与输入之间没有保存任何状态。对于这样的网络,要想处理数据点的序列或时间序列,你需要向网络同时展示整个序列,即将序列转换成单个数据点。例如,在IMDB电影评论数据集中,我们将全部电影评论转换为一个大向量,然后一次性处理。这种网络叫作前馈网络(feedforward network)。与此相反,当你在阅读句子时,你原创 2020-05-12 10:42:50 · 1711 阅读 · 0 评论 -
Python深度学习——卷积神经网络简介
文章目录1.使用CNN对MNIST 数字进行分类2.卷积运算3.最大池化运算卷积神经网络,也叫convnet,它是计算机视觉应用几乎都在使用的一种深度学习模型。1.使用CNN对MNIST 数字进行分类下列代码将会展示一个简单的卷积神经网络。(1)Conv2D 层和MaxPooling2D 层的堆叠from keras import layersfrom keras import mo...原创 2020-04-30 19:32:29 · 1326 阅读 · 0 评论 -
Python深度学习——神经网络剖析
文章目录1.概述2.层:深度学习的基础组件3.模型:层构成的网络4.损失函数与优化器:配置学习过程的关键1.概述训练神经网络主要围绕以下四个方面。层,多个层组合成网络(或模型)。输入数据和相应的目标。损失函数,即用于学习的反馈信号。优化器,决定学习过程如何进行。它们之间的关系如下图所示:2.层:深度学习的基础组件神经网络的基本数据结构是层。层是一个数据处理模块,将一个或多个...原创 2020-04-30 18:28:11 · 430 阅读 · 0 评论 -
Python深度学习——机器学习基础
文章目录机器学习的四个分支1.监督学习2.无监督学习3.自监督学习4.强化学习评估机器学习模型1.训练集、验证集和测试集2.评估模型的注意事项3.数据预处理、特征工程和特征学习(1)神经网络的数据预处理(2)特征工程机器学习的四个分支1.监督学习监督学习是目前最常见的机器学习类型。给定一组样本(通常由人工标注),它可以学会将输入数据映射到已知目标[也叫标注(annotation)]。一般来说...原创 2020-04-29 23:14:09 · 394 阅读 · 0 评论 -
损失函数总结(更新ing)
文章目录1.回归2.分类1.回归平方差损失函数:我们需要衡量价格预测值与真实值之间的误差。通常我们会选取一个非负数作为误差,且数值越小表示误差越小。一个常用的选择是平方函数。它在评估索引为 ii 的样本误差的表达式为:其中常数 1/21/21/2 使对平方项求导后的常数系数为1,这样在形式上稍微简单一些。显然,误差越小表示预测价格与真实价格越相近,且当二者相等时误差为0。给定训练数据集,...原创 2020-04-28 18:49:53 · 489 阅读 · 0 评论 -
波士顿房价数据集——预测房价
文章目录1.数据集及问题简介2.加载数据集并探索数据3.准备输入的数据4.构建网络并编译网络6.从训练集中留出验证集(K折验证法),初步训练模型7.根据训练数据,重新训练模型并测试8.画出训练数据9.调参完成后,在所有训练集上训练生产模型10.使用训练好的网络在新数据上生成预测结果总结1.数据集及问题简介20 世纪70 年代中期波士顿郊区房屋价格数据集,它包含的数据点相对较少,只有506 个,...原创 2020-04-28 15:45:13 · 7339 阅读 · 1 评论 -
【Python】Pandas笔记(更新ing)
读取数据1.读取数据文件pd.read_csv()pd.read_csv(fpath,sep,header,names)pd.read_excel()pd.read_sql()with open as f : for line in f:创建数据结构1.Seriespd.Series(values,index)pd.Series({ index:value})s.ind...原创 2020-03-11 17:25:45 · 248 阅读 · 0 评论 -
路透社数据集——新闻主题多分类
文章目录1.数据探索1.数据探索理解并分析这个问题:研究每个变量,并从哲学角度分析它们对这个问题的意义和重要性。单变量的研究。我们只关注因变量并试着对它了解更多一点。多变量的研究。我们试着理解因变量和自变量之间的关系。基本的数据清洗。我们将清理数据集并处理丢失的数据、异常值和分类变量。测试的假设。我们将检查我们的数据是否符合大多数多元技术要求的假设。from keras.data...原创 2020-04-27 19:32:12 · 5766 阅读 · 1 评论 -
IMDB数据集——文本情绪二分类
文章目录1.数据集及问题简介1.数据集及问题简介IMDB 数据集,它包含来自互联网电影数据库(IMDB)的50000 条严重两极分化的评论。数据集被分为用于训练的25000 条评论与用于测试的25000 条评论,训练集和测试集都包含50% 的正面评论和50% 的负面评论。与MNIST 数据集一样,IMDB 数据集也内置于Keras 库。它已经过预处理:评论(单词序列)已经被转换为整数序列,其...原创 2020-04-27 19:08:56 · 4320 阅读 · 1 评论 -
神经网络的“引擎”:基于梯度的优化
这是一个全连接层的定义:network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))它使用下述方法对输入数据进行变换:output = relu(dot(W, input) + b)在这个表达式中,W 和b 都是张量,均为该层的属性。它们被称为该层的权重(weight)或可训练参数(trainable...原创 2020-04-24 22:01:24 · 869 阅读 · 0 评论 -
神经网络的数据表示——张量
文章目录一、N阶张量二、张量的关键属性三、数据批量的概念四、现实世界中的数据张量五、张量运算一、N阶张量一般来说,当前所有机器学习系统都使用张量作为基本数据结构。张量这一概念的核心在于,它是一个数据容器。它包含的数据几乎总是数值数据,因此它是数字的容器。张量是矩阵向任意维度的推广[注意,张量的维度(dimension)通常叫作轴(axis)]。标量(0D 张量)仅包含一个数字的张量叫作标量...原创 2020-04-20 22:29:59 · 1689 阅读 · 0 评论 -
Mnist数据集——图像多分类
文章目录数据集介绍一、Keras方法数据集介绍一、Keras方法1.读取数据集MNIST 数据集预先加载在Keras 库中,其中包括4 个Numpy 数组。from keras.datasets import mnist(train_images, train_labels), (test_images, test_labels) = mnist.load_data()2.查看数据...原创 2020-04-20 22:04:50 · 1007 阅读 · 0 评论 -
【Python】Numpy笔记(更新ing)
文章目录`Python原生语法与Numpy对比``Numpy的核心array对象以及创建array的方法``Numpy对数组按索引查询``Numpy的数学统计函数``Numpy怎样给数组增加一个维度`Python原生语法与Numpy对比求数组元素的和:(1)使用Python原生list:def python_sum(n): """ Python实现数组的加法 @param ...原创 2020-04-13 22:11:30 · 444 阅读 · 0 评论 -
人工智能、机器学习、深度学习简介及相互关系
文章目录人工智能机器学习历史机器学习的要素机器学习的技术定义常见机器学习算法概率建模核方法决策树类算法深度学习深度学习要素深度学习已经取得的进展深度学习和机器学习方法的比较不要把深度学习作为锤子人工智能人工智能诞生于20 世纪50 年代,当时计算机科学这一新兴领域的少数先驱开始提出疑问:计算机是否能够“思考”?我们今天仍在探索这一问题的答案。人工智能的简洁定义如下:努力将通常由人类完成的智力...原创 2020-04-10 14:09:14 · 1209 阅读 · 0 评论 -
Pytorch实现softmax回归
文章目录1.导入相关包2.获取和读取数据3.初始化模型参数4.实现softmax运算5.定义模型6.定义损失函数7.计算分类准确率8.训练模型9.预测1.导入相关包#【1】导入相关包import torchfrom torch import nnfrom torch.nn import initimport torchvisionimport torchvision.transfor...原创 2020-03-21 17:33:43 · 1419 阅读 · 2 评论 -
Pytorch实现线性回归
1.引入包import torchfrom IPython import displayfrom matplotlib import pyplot as pltimport numpy as npimport random #random模块用于生成随机数%matplotlib inline 在使用jupyter notebook 或者 jupyter qtconsole的时候,才...原创 2020-03-20 21:11:01 · 1943 阅读 · 1 评论 -
Pytorch自动求梯度
1.何谓求梯度在深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。如果将tensor属性.requires_grad设置为True,它将开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了)。完成计算后,可以调用.backward()来完成所有梯度计算。此Tenso...原创 2020-03-20 15:22:12 · 508 阅读 · 0 评论 -
Pytorch数据操作之张量操作
1.算术操作1.加法x = torch.rand(5, 3)y = torch.rand(5, 3)#【1】直接+print(x + y)#【2】add函数print(torch.add(x, y))result = torch.empty(5, 3)torch.add(x, y, out=result)#指定输出print(result)#【3】add_覆盖函数y.ad...原创 2020-03-20 11:36:37 · 423 阅读 · 0 评论 -
Pytorch数据操作之创建张量
1.首先导入Pytorch:import torch2.创建Tensor#【1】不初始化x = torch.empty(5, 3)#【2】随机初始化x = torch.rand(5, 3)#0-1之间的数#【3】全零,指定数据类型x = torch.zeros(5, 3, dtype=torch.long)#【4】直接根据数据创建x = torch.tensor([5.5, ...原创 2020-03-20 10:57:22 · 254 阅读 · 0 评论