利用tensorflow训练自己的图片——2、网络搭建(AlexNet)

本文介绍如何使用Tensorflow构建AlexNet模型,为图像分类任务做准备。内容涵盖网络架构的详细说明及代码实现,便于后续模型调整。
摘要由CSDN通过智能技术生成

得到数据之后,接下来就是网络的搭建,我在这里将模型单独定义出来,方便后期的网络修正。

#!/usr/bin/env python2
# -*- coding: utf-8 -*-

"""
Spyder Editor
This is a temporary script file.
filename:DR_alexnet.py
creat time:2018年1月16日
author:huangxudong
"""
import tensorflow as tf
import numpy as np
#define different layer function
def maxPoolLayer(x,kHeight,kWidth,strideX,strideY,name,padding="SAME"):
    return tf.nn.max_pool(x,ksize=[1,kHeight,kWidth,1],strides=[1,strideX,strideY,1],padding=padding,name=name)

def dropout(x,keepPro,name=None):
    return tf.nn.dropout(x,keepPro,name)

def LRN(x,R,alpha,beta,name=None,bias=1.0):                      #局部相应归一化
    return tf.nn.local_response_normalization(x,depth_radius=R,alpha=alpha,
                                              beta=beta,bias=bias,name=name)
def fcLayer(x,inputD,outputD,reluFlag,name):
    with tf.variable_scope
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值