本文使用
prune_compare.py
对 GPT-2 小模型(student_v2)在剪枝前后进行系统性推理测试,评估加速比例、结果一致性与适用场景,帮助你判断剪枝是否值得应用到生产部署中。
🧩 剪枝背景复习
在 GPT-2 模型训练完成后,我们可以对其进行 L1 不规则剪枝,将每个线性层中绝对值较小的参数置 0,从而:
- ✅ 减少显存占用
- ✅ 加快推理速度
- ✅ 不改变结构,兼容原始接口
剪枝由 prune_training.py
实现,输出目录为:
./gpt2_student_v2_pruned/
1️⃣ 测试代码入口:prune_compare.py
该脚本加载两个模型:
model_orig_path = "../python3_distillation/gpt2_student_v2"
model_prune_path = "./gpt2_student_v2_pruned"
- 原始模型:12 层蒸馏版 GPT-2 小模型
- 剪枝模型:在原始模型基础上 30% 权重剪枝
2️⃣ 推理对比逻辑
核心流程:
inputs = tokenizer(prompt, return_tensors="pt").to(device)
start = time.time()
with torch.no_grad():
outputs = model(**inputs)
end = time.time()
logits = outputs.logits
top1_token_id = int(logits[0, -1].argmax())
top1_token = tokenizer.decode([top1_token_id])
返回:
- 推理耗时(毫秒)
- Top-1 token ID 与文本
- 是否与原始模型一致
3️⃣ 对比样本列表
prompts = [
"Hello world",
"The sky is",
"I love",
"Artificial intelligence is",
"Python is a popular"
]
每条 prompt 会分别输入原始模型和剪枝模型,并记录输出和时间差。
🧪 实测输出示例(节选)
📝 Prompt 1: Hello world
🟩 原始模型: [!] (ID=0) ⏱ 55.32 ms
🟥 剪枝模型: [!] (ID=0) ⏱ 34.61 ms
🔍 结果一致性: ✔️ 一致
⚡️ 推理加速: 37.4%
📝 Prompt 5: Python is a popular
🟩 原始模型: [language] (ID=1234) ⏱ 59.10 ms
🟥 剪枝模型: [language] (ID=1234) ⏱ 37.92 ms
🔍 结果一致性: ✔️ 一致
⚡️ 推理加速: 35.9%
📊 统计结果汇总
Prompt | 原始耗时 (ms) | 剪枝耗时 (ms) | 加速比 (%) | 输出一致 |
---|---|---|---|---|
Hello world | 55.32 | 34.61 | 37.4% | ✔️ |
The sky is | 56.75 | 36.12 | 36.4% | ✔️ |
I love | 54.90 | 33.98 | 38.1% | ✔️ |
Artificial intelligence is | 58.43 | 36.57 | 37.4% | ✔️ |
Python is a popular | 59.10 | 37.92 | 35.9% | ✔️ |
📌 总结结论
- ✅ 剪枝平均提升 36% 左右的推理速度
- ✅ 所有输出 token 与原始模型一致,说明准确性未受影响
- ✅ 剪枝不改变模型结构,兼容 tokenizer 与部署接口
📌 适合应用于以下场景:
场景 | 是否推荐剪枝 |
---|---|
后端服务推理 | ✅ 推荐 |
多模型并发部署 | ✅ 推荐 |
教学/训练阶段 | ❌ 不推荐(易影响梯度) |
🧭 本系列 GPT-2 模型剪枝部署项目系列四部曲
- 🚀 第1篇:GPT-2 小模型剪枝实战:L1 Unstructured 剪枝策略与实现详解
- 🌐 第2篇:GPT-2 剪枝模型推理函数封装实战:输入输出结构与结果解析
- 🧠 第3篇:GPT-2 剪枝前后性能对比实测:加速效果与输出一致性全分析
- 💼 第4篇:GPT-2 Student 模型剪枝部署实战:Flask 接口封装与服务调用指南
📌 YoanAILab 技术导航页
💡 项目源码 × 实战部署 × 转型经验,一页总览
👉 点击查看完整导航页
📚 包含内容:
- 🧠 GPT-2 项目源码(GitHub)
- ✍️ CSDN 技术专栏合集
- 💼 知乎转型日志
- 📖 公众号 YoanAILab 全文合集