GPT-2 剪枝前后性能对比实测:加速效果与输出一致性全分析

本文使用 prune_compare.py 对 GPT-2 小模型(student_v2)在剪枝前后进行系统性推理测试,评估加速比例、结果一致性与适用场景,帮助你判断剪枝是否值得应用到生产部署中。


🧩 剪枝背景复习

在 GPT-2 模型训练完成后,我们可以对其进行 L1 不规则剪枝,将每个线性层中绝对值较小的参数置 0,从而:

  • ✅ 减少显存占用
  • ✅ 加快推理速度
  • ✅ 不改变结构,兼容原始接口

剪枝由 prune_training.py 实现,输出目录为:

./gpt2_student_v2_pruned/

1️⃣ 测试代码入口:prune_compare.py

该脚本加载两个模型:

model_orig_path = "../python3_distillation/gpt2_student_v2"
model_prune_path = "./gpt2_student_v2_pruned"
  • 原始模型:12 层蒸馏版 GPT-2 小模型
  • 剪枝模型:在原始模型基础上 30% 权重剪枝

2️⃣ 推理对比逻辑

核心流程:

inputs = tokenizer(prompt, return_tensors="pt").to(device)

start = time.time()
with torch.no_grad():
    outputs = model(**inputs)
end = time.time()

logits = outputs.logits
top1_token_id = int(logits[0, -1].argmax())
top1_token = tokenizer.decode([top1_token_id])

返回:

  • 推理耗时(毫秒)
  • Top-1 token ID 与文本
  • 是否与原始模型一致

3️⃣ 对比样本列表

prompts = [
    "Hello world",
    "The sky is",
    "I love",
    "Artificial intelligence is",
    "Python is a popular"
]

每条 prompt 会分别输入原始模型和剪枝模型,并记录输出和时间差。


🧪 实测输出示例(节选)

📝 Prompt 1: Hello world
  🟩 原始模型: [!] (ID=0) ⏱ 55.32 ms
  🟥 剪枝模型: [!] (ID=0) ⏱ 34.61 ms
  🔍 结果一致性: ✔️ 一致
  ⚡️ 推理加速: 37.4%
📝 Prompt 5: Python is a popular
  🟩 原始模型: [language] (ID=1234) ⏱ 59.10 ms
  🟥 剪枝模型: [language] (ID=1234) ⏱ 37.92 ms
  🔍 结果一致性: ✔️ 一致
  ⚡️ 推理加速: 35.9%

📊 统计结果汇总

Prompt原始耗时 (ms)剪枝耗时 (ms)加速比 (%)输出一致
Hello world55.3234.6137.4%✔️
The sky is56.7536.1236.4%✔️
I love54.9033.9838.1%✔️
Artificial intelligence is58.4336.5737.4%✔️
Python is a popular59.1037.9235.9%✔️

📌 总结结论

  • ✅ 剪枝平均提升 36% 左右的推理速度
  • ✅ 所有输出 token 与原始模型一致,说明准确性未受影响
  • ✅ 剪枝不改变模型结构,兼容 tokenizer 与部署接口

📌 适合应用于以下场景:

场景是否推荐剪枝
后端服务推理✅ 推荐
多模型并发部署✅ 推荐
教学/训练阶段❌ 不推荐(易影响梯度)

🧭 本系列 GPT-2 模型剪枝部署项目系列四部曲


📌 YoanAILab 技术导航页

💡 项目源码 × 实战部署 × 转型经验,一页总览
👉 点击查看完整导航页

📚 包含内容:

  • 🧠 GPT-2 项目源码(GitHub)
  • ✍️ CSDN 技术专栏合集
  • 💼 知乎转型日志
  • 📖 公众号 YoanAILab 全文合集
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YoanAILab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值