poj 2635

高精度求模+同余模定理

 

1、  Char格式读入K。把K转成千进制Kt,同时变为int型。

把数字往大进制转换能够加快运算效率。若用十进制则耗费很多时间,会TLE。

千进制的性质与十进制相似。

例如,把K=1234567890转成千进制,就变成了:Kt=[  1][234][567][890]。

为了方便处理,我的程序是按“局部有序,全局倒序”模式存放Kt

即Kt=[890][567][234][1  ]  (一个中括号代表一个数组元素)

2、  素数打表,把10^6内的素数全部预打表,在求模时则枚举到小于L为止。

注意打表不能只打到100W,要保证素数表中最大的素数必须大于10^6,否则当L=100W且K为GOOD时,会因为数组越界而RE,这是因为越界后prime都是负无穷的数,枚举的while(prime[pMin]<L)循环会陷入死循环

3、  高精度求模。

主要利用Kt数组和同余模定理。

例如要验证123是否被3整除,只需求模124%3

但当123是一个大数时,就不能直接求,只能通过同余模定理对大数“分块”间接求模

具体做法是:

先求1%3 = 1

再求(1*10+2)%3 = 0

再求 (0*10+4)% 3 = 1

那么就间接得到124%3=1,这是显然正确的

而且不难发现, (1*10+2)*10+4 = 124

这是在10进制下的做法,千进制也同理,*10改为*1000就可以了

代码如下:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int prime[1000010];
bool is_prime[1000010];
int p,l;
char a[105];
int kt[100];
void solve( )
{
	p=0;
	for(int i=0;i<=1000010;i++) is_prime[i]=true;
	is_prime[0]=is_prime[1]=false;
	for(int i=2;i<=1000010;i++){
		if(is_prime[i]){
			prime[p++]=i;
			for(int j=2*i;j<=1000010;j+=i)
				is_prime[j]=false;
		}
	}
}
bool Mod(int p,int len)
{
	int sp=0;
	for(int i=len-1;i>=0;i--){
		sp=(sp*1000+kt[i])%p;
	}
	if(!sp) return false;
	else return true;
}
int main()
{
	solve();
	while(scanf("%s%d",a,&l)){
		if(a[0]=='0'&&l==0) break;
		int len=strlen(a);
		memset(kt,0,sizeof(kt));
		for(int i=0;i<len;i++){
			int ii=(len-i+2)/3-1;
			kt[ii]=kt[ii]*10+a[i]-'0';
		}
		int lenk=(len+2)/3;
		int flag=true;
		int kmin=0;
		while(prime[kmin]<l){
			if(!Mod(prime[kmin],lenk)){
				flag=false;
				printf("BAD %d\n",prime[kmin]);
				break;
			}
			kmin++;
		}
		if(flag) printf("GOOD\n");
	}
}

1000进制跑了829ms,100进制跑了1188ms

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值