题目描述:


ok,编辑距离大家都比较熟悉了,画个表格基本ok,我个人的构想起点是左上角,从左到右还是从上到下都代表新增和删除,对角线上代表修改对吧,其实很好理解,i-1, j-1已经计算好了那个位置的最短距离,下一个元素可以选择修改等同。
那么我们的选择无非就是新增、删除、更改中三选一,给出状态转移公式:
dp[i][j] = min((dp[i-1][j] + 1), (dp[i][j-1] + 1), (dp[i-1][j-1] + 1)) if(word1[i-1] != word2[j-1]);
dp[i][j] = min((dp[i-1][j] + 1), (dp[i][j-1] + 1), (dp[i-1][j-1])) if(word1[i-1] == word2[j-1]);
初始化的就代码里面看吧。
class Solution {
public:
int minDistance(string word1, string word2) {
//赶时间就简写,两个字符串无论如何最开头都认为空串
//dp[0][0] = 0 空串不用改
//我们假设我们的起始点是左上角,那么从左往右或者从上往下都可以代表insert或者delete(不理解画个表格)
//update只在对应位置不同才修改
//dp[i][j] = min((dp[i-1][j] + 1), (dp[i][j-1] + 1), (dp[i-1][j-1] + 1)) if(word1[i-1] != word2[j-1]);
//dp[i][j] = min((dp[i-1][j] + 1), (dp[i][j-1] + 1), (dp[i-1][j-1])) if(word1[i-1] == word2[j-1]);
int n = word1.length();
int m = word2.length();
int dp[n+5][m+5];
//初始
dp[0][0] = 0;
dp[1][0] = 1;
dp[0][1] = 1;
//空字符对谁都是直接insert所以填
for(int i = 1; i <= n; i++) dp[i][0] = i;
for(int j = 1; j <= m; j++) dp[0][j] = j;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
if(word1[i-1] == word2[j-1]) dp[i][j] = min((dp[i-1][j] + 1), min((dp[i][j-1] + 1), (dp[i-1][j-1])));
else if(word1[i-1] != word2[j-1]) dp[i][j] = min((dp[i-1][j] + 1), min((dp[i][j-1] + 1), (dp[i-1][j-1] + 1)));
}
}
return dp[n][m];
}
};
看起来我的代码还挺快的

本文深入讲解编辑距离算法,探讨如何通过动态规划解决字符串之间的转换问题。文章提供了详细的代码实现,包括状态转移方程和初始化过程,帮助读者理解并掌握编辑距离的计算方法。
1199

被折叠的 条评论
为什么被折叠?



