1. 引言
我们都知道tensorflow框架可以使用tensorboard这一高级的可视化的工具,为了使用tensorboard这一套完美的可视化工具,未免可以将其应用到Pytorch中,用于Pytorch的可视化。这里特别感谢Github上的解决方案: https://github.com/lanpa/tensorboardX。
本文主要是针对该解决方案提供一些介绍。
TensorboardX支持scalar, image, figure, histogram, audio, text, graph, onnx_graph, embedding, pr_curve and videosummaries等不同的可视化展示方式,具体介绍移步至项目Github 观看详情
2. 环境依赖:
- python 3.6+
- Pytorch 0.4.0+
- tensorboardX: pip install tensorboardX、pip install tensorflow
3. 代码教程
TensorboardX可以提供中很多的可视化方式,本文主要介绍scalar 和 graph,其他类型相似。
3.1 可视化scalar
代码
import numpy as np
from tensorboardX import SummaryWriter
writer = SummaryWriter(log_dir='scalar')
for epoch in range(100):
writer.add_scalar('scalar/test', np.random.rand(), epoch)
writer.add_scalars('scalar/scalars_test', {
'xsinx': epoch * np.sin(epoch), 'xcosx': epoch * np.cos(epoch)}, epoch)
writer.close()
对上述代码进行解释,首先导入:from tensorboardX import SummaryWriter
,然后定义一个SummaryWriter()
实例。在SummaryWriter()
上鼠标ctrl+b我们可以看到SummaryWriter()
的参数为:def __init__(self, log_dir=None, comment='', **kwargs)
: 其中log_dir
为生成的文件所放的目录,comment
为文件名称。默认目录为生成runs文件夹目录。我们运行上述代码:生成结果为:
当我们为SummaryWriter(comment='base_scalar')
。生成结果为:
当我们为SummaryWriter(log_dir='scalar')
添加log_dir
参数,可以看到第二条数据的文件名称包括了base_scalar
值。生成结果目录为:
接着解释writer.add_scalar('scalar/test', np.random.rand(), epoch)
,这句代码的作用就是,将我们所需要的数据保存在文件里面供可视化使用。 这里是Scalar
类型,所以使用writer.add_scalar()
,其他的队形使用对应的函数。第一个参数可以简单理解为保存图的名称,第二个参数是可以理解为Y轴数据,第三个参数可以理解为X轴数据。当Y轴数据不止一个时,可以使用writer.add_scalars()
.运行代码之后生成文件之后,我们在runs同级目录下使用命令行:tensorboard --logdir runs
. 当SummaryWriter(log_dir='scalar')
的log_dir
的参数值 存在时,将tensorboard --logdir runs
改为tensorboard --logdir 参数值
。
最后调用writer.close()。
点击链接即可看到我们的最终需要的可视化结果。
可以分别点击对应的图片查看详情。可以看到生成的Scalar
名称为'scalar/test'
与'scalar/test'
一致。注:可以使用左下角的文件选择你想显示的某个或者全部图片。
3.2 可视化网络结构
代码
import torch
import torch.nn as nn
import torch.nn.functional as F
from tensorboardX import SummaryWriter
class Net1(nn.Module):
def __init__(self):
super(Net1, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50<