并查集和路径压缩

并查集的功能基本上就在他名字里了。
并是指合并两个集合,查是指查找该元素属于哪个集合。
用我看过的一篇文章来描述每一个江湖门派就是一个集合,底下不管有多少帮众,他们的头的头…最终头头就是掌门人,并查集的查就是查掌门人,并就是并两个帮派。
用father[i]来表示i的父亲结点,若father[i]==i,它就是掌门人,很容易得出查的操作:

int findfather(int k){
 	int x=k
 	while(x!=father[x]){
 		x=father[x];
	 }	
	 return x;
 }

下面讲并,两个帮派怎么合并,人员统计来统计去太麻烦,干脆让一个掌门人认另一个掌门人做小弟就完事了,于是有:

void unionit(int a,int b){
 	int i=findfather(a),j=findfather(b);
 	father[j]=i;	
 }

如果要对该门派进行路径压缩,提高查的效率,考虑到时间问题,如果每一个帮众都直接指向掌门人,一切就简单了,这就叫路径压缩:

int findfather(int k){   //路径压缩后的查
 	int x=k
 	while(x!=father[x]){
 		x=father[x];
	 }
	 
	 while(k!=x){
	 	int i=father[k];
	 	father[k]=x;
	 	k=i;
	 } 
 	return x;
 }

当然有递归实现,但是如果考虑到路径压缩为了时间效率的话,最好还是写迭代模式好一点。

该方法在数据结构中最小生成树判断是否产生环很有用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值