并查集与路径压缩

并查集是一种用于处理一些不相交集合合并与查找的算法。本文介绍了并查集的定义、基本操作包括初始化、查找和合并,特别强调了路径压缩的概念和重要性,通过递归和非递归方式展示了如何实现路径压缩,以提高查找效率。
摘要由CSDN通过智能技术生成

1.1并查集的定义

所谓并查集就是“Union(合并)”,“Find(查找)”,“Set(集合)”对应的中文翻译,集合是指对集合操作的,而支持的操作就是Union和Find:
1)合并:合并两个集合。
2)查找:判断两个元素是否在一个集合。
好,定义我们知道了,那么并查集是如何实现的呢?其实就是一个数组:

int father[N];

其中father[i]表示元素i的父亲结点,而父亲结点本身也是这个集合内的元素(1<=i<=N)。例如father[1] = 2就表示元素的父亲结点是元素2,以这种父系关系来表示元素所属的集合。另外,如果father[i] = i,则说明元素i是该集合的根结点,且将其作为所属集合的标识。

1.2 并查集的基本操作

总体来说,并查集的使用需要初始化father数组,然后再根据需要进行查找或合并的操作。
1.2.1 初始化
一开始,每一个元素都是独立的一个集合,因此需要令所有father[i]等于i:

for(int i = 1;i<=N:i++){
   
	father[i] = i;//令father[i] = 1也可 这里只不过是拿father[i] = i举例 
} 

1.2.2 查找
由于规定同一个集合只存在一个根结点,因此查找操作就是对给定的结点寻找其根结点的过程。实现的方式可以是递推或递归,但是其思路都是一样的,即反复寻找父亲结点,直到根结点。(即father[i] = i的结点)。
递推写法如下:

//findFather函数返回元素x所在集合的结点
int findFather(int x){
   
	while(x!=father
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值