1.1并查集的定义
所谓并查集就是“Union(合并)”,“Find(查找)”,“Set(集合)”对应的中文翻译,集合是指对集合操作的,而支持的操作就是Union和Find:
1)合并:合并两个集合。
2)查找:判断两个元素是否在一个集合。
好,定义我们知道了,那么并查集是如何实现的呢?其实就是一个数组:
int father[N];
其中father[i]表示元素i的父亲结点,而父亲结点本身也是这个集合内的元素(1<=i<=N)。例如father[1] = 2就表示元素的父亲结点是元素2,以这种父系关系来表示元素所属的集合。另外,如果father[i] = i,则说明元素i是该集合的根结点,且将其作为所属集合的标识。
1.2 并查集的基本操作
总体来说,并查集的使用需要初始化father数组,然后再根据需要进行查找或合并的操作。
1.2.1 初始化
一开始,每一个元素都是独立的一个集合,因此需要令所有father[i]等于i:
for(int i = 1;i<=N:i++){
father[i] = i;//令father[i] = 1也可 这里只不过是拿father[i] = i举例
}
1.2.2 查找
由于规定同一个集合只存在一个根结点,因此查找操作就是对给定的结点寻找其根结点的过程。实现的方式可以是递推或递归,但是其思路都是一样的,即反复寻找父亲结点,直到根结点。(即father[i] = i的结点)。
递推写法如下:
//findFather函数返回元素x所在集合的结点
int findFather(int x){
while(x!=father