快速幂模板及应用

实现原理:
a^b mod c = ((a^2)^b/2)mod c,b为偶数,
a^b mod c = ((a^2)^b/2 * a)mod c,b为奇数。

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<ctime>
using namespace std;
typedef unsigned long long ll;
ll a,b,MOD;

ll powr(ll a,ll i)//位运算递归版 
{
  if (i==0) return 1;
  int temp=powr(a,i>>1);
  temp=temp*temp%MOD;
  if (i&1) temp=(ll)temp*a%MOD;
  return temp%MOD;
}

ll f(ll a,ll b,ll n)//位运算非递归 
{
  int t,y;
  t=1; y=a;
  while (b!=0)
  {
      if (b&1==1) t=t*y%MOD;
      y=y*y%MOD; b=b>>1;
  }
  return t;
}

int pow1(int a,int b)//常规求幂 
{
   int r=1;
   while(b--) r*=a;
   return r;
}

int pow2(int a,int b)//一般快速求幂 
{
    int r=1,base=a;
    while(b!=0)
    {
        if(b%2) r*=base;
        base*=base;
        b/=2;
    }
    return r;
}

int main()
{
    scanf("%llu%llu%llu",&a,&b,&MOD);
    printf("%d\n",powr(a,b));
    printf("Time used = %0.3f\n",(double)clock()/CLOCKS_PER_SEC); 
    return 0;
}

应用:
费马小定理求逆元的实现。
费马小定理:假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)。
即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。a^(p-1)%p = 1
逆元:如果a*x≡1(mod p),则称x为a关于mod p意义下的逆元(inv),x即是1/a。
那么我们就可以将x换为a^(p-2),逆元定义式便转化为了费马小定理公式,那么a关于mod p意义下的逆元即为a^(p-2)——快速幂求解。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值