定义
存在于无向图中。
割点:删除此点使得图中连通块数量增加。
桥(割边):删除此边使得图中连通块数量增加——割点于割点之间的直接连边为桥。
判断割点方法:
1.u为树根,且u有多于一个子树。
2.u不为树根,且存在(u,v)为树枝边(或称父子边,即u为v在搜索树中的父亲),使得dfn(u)<=low(v)。
也就是u的子树中的v点无法到达u之前的点,所以去掉u点就是两个连通分支,所以u为割点。
判断桥的方法:
一条边(u,v)是桥,当且仅当(u,v)为树枝边(即非负边),且满足dfn(u)< low(v)(前提是其没有重边)。
也就是,u的儿子v之间只有一条边(前提是无重边),且v点只能到v点到不了v点前,所以去掉(u,v)边就是两个连通分支,所以(u,v)为桥。
注意:找桥的时候,要注意看有没有重边.有重边,则不是桥。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,ru,rv,tot,cnt,num,chl,root,ans;
int first[500010],nxt[500010],dfn[500010],low[500010],siz[500010],sccno[500010],stak[500010];
bool flag[500010],flag1[500010];//割点,桥
struct edge
{
int u,v;
}l[1000010];
void build(int f,int t)
{
l[++tot]=(edge){f,t};
nxt[tot]=first[f];
first[f]=tot;
}
void dfs(int k)
{
dfn[k]=low[k]=++tot;
stak[++num]=k;
chl=0;
for(int i=first[k];i!=-1;i=nxt[i])
{
int x=l[i].v;
if(!dfn[x])
{
chl++;//记录子节点数,仅对根节点有意义
dfs(x);
low[k]=min(low[k],low[x]);
if((k!=root&&low[x]>=dfn[k])||(k==root&&chl>1))
{
if(!flag[k])
ans++;
flag[k]=1;
}
if(low[x]>dfn[k])//前提没有重边,有重边则不为bridge
flag1[i]=1;
}
else if(!sccno[x])
low[k]=min(low[k],dfn[x]);
}
if(low[k]==dfn[k])
{
cnt++;
while(1)
{
sccno[stak[num--]]=cnt;
siz[cnt]++;
if(stak[num+1]==k)
break;
}
}
}
int main()
{
memset(first,-1,sizeof(first));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&ru,&rv);
build(ru,rv);
build(rv,ru);
}
tot=0;
for(int i=1;i<=n;i++)
{
if(!dfn[i])
{
root=i;
dfs(i);
}
}
printf("%d\n",ans);
for(int i=1;i<=n;i++)
if(flag[i])
printf("%d ",i);
return 0;
}