AI换脸facefusion 3.0.1安装及其使用方法(源代码安装)

今天给大家分享换脸facefusion 3.0.1使用方法。不仅可以对单张图片换脸,也可以对视频换脸。如果是单张图片的话,没有GPU速度也很快,也就不到1秒。我的cpu是5800X。

FaceFusion 是一款领先的面部操控平台,主要功能包括:

  • 人脸交换:利用先进的 AI 技术,实现照片或视频中人脸的无缝替换。
  • 图像增强:通过集成 GFPGAN 和 Real-ESRGAN 等模型,提升图像质量,恢复面部细节。
  • 嘴型同步:在视频中同步嘴部动作,使替换后的面部更加逼真。

该平台适用于电影制作、广告设计和内容创作等领域,提供专业级的视觉效果

效果可以跳转到最后看一下。

github地址:https://github.com/facefusion/facefusion

1. 本文简介

本博客安装教程是在windows上安装的,因为大多数人用的都是win。其它系统的安装方法可查看:https://docs.facefusion.io/installation

所需软件及其环境

git
Miniconda
FFmpeg
Codec
python>=3.10(conda创建的环境)

这如果你电脑上没有这些软件也不要紧,下面我也会介绍相应的安装方法。

2. 软件环境准备

软件下载及安装

  1. git下载

    winget install -e --id Git.Git
    

    解释:这条命令通过 winget 安装 Git,这是一个版本控制工具,通常用于管理代码库(例如 GitHub)。-e 选项表示精确匹配 ID,--id Git.Git 指定了安装包的名称。

  2. Miniconda下载

    winget install -e --id Anaconda.Miniconda3 --override "/AddToPath=1"
    

    解释:这条命令通过 winget 安装 Miniconda,这是一个轻量级的 Python 环境管理和包管理工具。Conda 通常用于创建和管理 Python 虚拟环境和数据科学包。--override "/AddToPath=1" 参数表示在安装过程中要将 Miniconda 添加到系统环境变量 PATH 中,这样你可以直接从命令行调用 condapython

  3. FFmpeg

    winget install -e --id Gyan.FFmpeg
    

    解释:这条命令通过 winget 安装 FFmpeg,这是一个用于处理音频、视频、多媒体文件和流的开源工具。它可以用于格式转换、剪切、合并等操作,是多媒体处理的强大工具。

  4. Codec Pack

    winget install -e --id CodecGuide.K-LiteCodecPack.Basic
    

    解释:这条命令通过 winget 安装 K-Lite Codec Pack,这是一个常用的编解码器集合,用于确保你的计算机能够播放各种常见的音频和视频格式。Basic 版通常足以播放大多数主流媒体文件。

代码下载

可以从以下两种方式下载代码:

github仓库、百度网盘

  1. github仓库:https://github.com/facefusion/facefusion

    如果电脑上有git,直接使用git clone命令下载代码

    git clone https://github.com/facefusion/facefusion
    

    如果没有git,那么可以下载压缩包

    在这里插入图片描述

如果不能访问github,可以使用一些github的镜像。

  1. 百度网盘

    可能部分人无法访问github,我将代码上传到了百度云,可以直接下载。同时下载的文件中也包含之后需要的模型权重文件。

    网盘链接:通过百度网盘分享的文件:facefusion
    链接:https://pan.baidu.com/s/1FYhPV_M05xdJ2bE07bSugQ?pwd=vxcc
    提取码:vxcc

3. Conda环境

  • 新建虚拟环境

    conda create -n facefusion python=3.12
    
  • 激活环境

    activate facefusion
    

4. 加速环境

  • CUDA

    conda install conda-forge::cuda-runtime=12.4.1 conda-forge::cudnn=9.2.1.18
    
  • TensorRT

    pip install tensorrt==10.5.0 --extra-index-url https://pypi.nvidia.com
    
  • OpenVINO

    conda install conda-forge::openvino=2024.3.0
    

5. 依赖安装

克隆仓库:

git clone https://github.com/facefusion/facefusion

之前应该都下载了,直接进入facefusion文件夹:

cd facefusion

进入之前下载的facefusion的文件夹,确保在该文件下路径下使用以下命令,因为install.py在该文件夹下。

使用如下命令安装依赖:

python install.py --onnxruntime {default, ...}

直接使用该命令无法运行的,后面括号是需要自己选择的,有几种模式 ‘default’, ‘cuda’, ‘openvino’, ‘directml’,如果电脑是N卡,使用cuda的方式安装,使用如下命令:

python install.py --onnxruntime cuda

应该需要较长的时间进行安装,因为依赖非常多。

安装完成之后,就可以使用如下命令打开网页端运行:

python facefusion.py run

第一次运行,应该会自动下载各种模型权重,权重默认保存在.assets文件夹内,大概需要下载如下权重:

在这里插入图片描述

如果通过百度云下载,这些模型权重也包括在内,就不会下载各种模型权重了,会直接运行,出现如下界面:

在这里插入图片描述

点击URL会直接在浏览器中打开如下界面,或者在浏览器中输入下面地址也可以:

http://127.0.0.1:7860/

在这里插入图片描述

如果英文不习惯,可以直接右键网页进行翻译,会显示中文。

因为默认是cpu,如果有cuda,可以选择cuda,这样会加速运行。对单张图片换脸的话,cpu也挺快的。

在这里插入图片描述

其他的内容如果感兴趣可以搜搜啥意思,然后自己进行调试。

如果只是随便玩玩,保持默认的就可以了。

6. 图片测试

SOURCE是原图片的脸,TARGET是目标的脸。就是把SOURCE的脸放在TARGET的脸上。
假如原图是吴彦祖,目标是大家的脸,运行之后,大家的脸都变成吴彦祖了,我是说大家都是吴彦祖。
在这里插入图片描述

只需要上传一个源图片和目标图片就可以,如果下载百度云的内容,文件夹images有几张图片可以进行测试。

我的图片如下:

在这里插入图片描述

输出的换脸图片如下:
在这里插入图片描述

哈哈哈哈,挺像胡歌的,很帅。

可以将图片调换一下,使用如下配置:

在这里插入图片描述

输出如下:

在这里插入图片描述

哈哈哈哈,很帅,有点像吴彦祖?

图片换脸就分享到这里,其他的大家可以自行摸索。

参考链接:https://github.com/facefusion/facefusion

https://docs.facefusion.io/installation

### 安装配置FaceFusion于Windows系统 #### 准备工作 为了顺利安装使用FaceFusion,在开始之前需确认计算机已配备NVIDIA显卡,并支持CUDA运算环境。这有助于通过GPU加速处理效率。 #### 下载与安装Python 建议下载并安装最新版本的Python,确保其版本不低于3.8。安装过程中勾选“Add Python to PATH”,以便后续命令行操作无障碍执行[^2]。 #### 获取FaceFusion源码 访问GitHub仓库页面获取项目文件,推荐采用Git克隆方式获得最稳定版源代码: ```bash git clone https://github.com/facefusion/facefusion.git cd facefusion ``` #### 设置虚拟环境 创建独立的Python虚拟环境来管理依赖项,防止与其他项目的库冲突: ```bash python -m venv venv venv\Scripts\activate ``` #### 安装必要软件包 激活虚拟环境后,依据官方文档指示安装所需的基础库和工具集。对于FaceFusion 2.61而言,重点在于ONNX及其Runtime的支持,同时配合CUDA及cuDNN实现硬件加速功能[^3]: ```bash pip install -r requirements.txt pip install onnx onnxruntime-gpu ``` #### 配置CUDA与cuDNN 前往[NVIDIA官方网站](https://developer.nvidia.com/cuda-downloads),按照指引完成对应版本CUDA Toolkit的安装;接着从[cuDNN Archive](https://developer.nvidia.com/rdp/cudnn-archive)挑选匹配当前CUDA版本的cuDNN组件进行本地化设置。注意保持两者版本兼容性良好。 #### 测试运行效果 一切准备就绪之后,可以通过如下指令启动应用程序界面,验证整个流程是否成功: ```bash python run.py ``` 如果希望体验实时摄像机输入,则附加特定参数调用脚本: ```bash python run.py --ui-layouts webcam ```
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百年孤独百年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值