SparkSql 常见使用

大数据 专栏收录该内容
3 篇文章 0 订阅
  1. 使用sparkSession代替sparkContext
  2. sparkSession读各种源:
  • 读文件:val peopleDf = spark.read.textFile("E:\\07-hadoop\\01-spark\\sql\\people.txt")
  1. df转rdd : val peopleDs = peopleDf.rdd
  2. 将rdd变换为一行一行:
    val peopleRdd = peopleDs.map(line => Row(line.split(",")(0), line.split(",")(1).toInt))
  3. 通过rdd和schema 创建临时表 spark.createDataFrame(peopleRdd,schema).createOrReplaceTempView("people")
  4. 使用sql查询临时表:val peopleSqlDf = spark.sql("select * from people")
  5. 两个dateFrame之间join等操作:

val rdd =

      locationSqlDf.join(peopleSqlDf,locationSqlDf("name") === peopleSqlDf("name")).drop(locationSqlDf("name")).toDF()

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值