python二手房数据分析可视化系统 全国二手房 房源分析 爬虫 数据采集 Django框架 链家网二手房 百万数据 大数据

1、项目介绍
技术栈:
Django框架、Echarts可视化、链家网二手房、requests爬虫、全国城市、HTML、房源数据量 175万套

本系统是基于Python爬虫的二手房数据采集与可视化,整个系统可以大致分为五个部分,分别为Python爬虫、数据清洗、ECharts图表可视化、用户管理、后端管理。本系统的功能结构图如图所示

2、项目界面

(1)系统首页
在这里插入图片描述

(2)数据总览
在这里插入图片描述

(3)数据可视化分析1

在这里插入图片描述

(4)数据可视化分析2

在这里插入图片描述

(5)数据可视化分析3

在这里插入图片描述

(6)数据可视化分析4

在这里插入图片描述

(7)数据可视化分析5
在这里插入图片描述

(8)个人中心
在这里插入图片描述
(9)后台数据管理
在这里插入图片描述

(10)注册登录
在这里插入图片描述

3、项目说明


当今社会,房地产行业是一个备受关注的领域。随着人们对房屋信息需求的不断增加,二手房市场也越来越受到关注。基于此,本文旨在基于Python编程语言,采集全国省会城市二手房数据,并通过数据可视化的方式呈现数据分析结果。
本文的研究主要分为三个部分:数据采集、数据处理和数据可视化。在数据采集方面,本文采用Python爬虫为主要数据获取方式。在数据处理方面,通过Pandas对采集到的二手房数据进行了清洗和处理,包括数据去重、数据格式转换、数据缺失值处理等。在数据可视化方面,使用了ECharts图表库绘制了多种数据可视化图表,包括房价分布图、房屋面积分布图、房屋户型分布图等,通过这些图表直观地展示了二手房数据的分布情况和趋势分析。同时,本文使用Django框架作为后端开发语言,利用Django框架的MVT设计模式实现了二手房数据的采集、处理和存储,还使用了Bootstrap框架作为前端页面的设计框架,使得网页具有良好的视觉效果和用户体验,并实现了响应式布局,使得网页可以适应不同大小的屏幕和设备。通过本文的研究,可以为相关行业提供技术支持和参考,为购房者提供数据支持,从而做出更加适合自身的选择。

关键词:二手房;ECharts可视化;Python爬虫;Django框架

4、核心代码

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值