并查集的两个功能
- 判断任意两个元素是否属于同一个集合
- 按照要求合并不同的集合
- 对于功能1,由于并查集中的每个结点都指向其父节点(根结点指向自己),故每个集合都有一个独一无二的 “ 根 ”,所以对于每个元素求根,通过比较根是否相同可以很方便的比较两个元素是否在同一个集合中。
- 对于功能2,通过将一个集合的根指向另一个集合中的元素,可以将两个集合合并。但如果只是简单的、不采取任何措施的合并,那么树高会一直增加,极端情况下可能退化成单链表,导致查找操作异常耗时。所以应当尽量保持较低的树高。基本策略是:总是将高度较低的树,作为高度较高的树的子树进行合并。从而提高查找效率。
例:
题目:畅通工程
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
对每个测试用例,在1行里输出最少还需要建设的道路数目。
#include<iostream>
using namespace std;
int father[1000];
int height[1000];//高度是从下往上算,也就是拥有后代的个数。如没有子节点则高度为0
int findRoot(int n)
{
int x = father[n];
while(x != father[x]){
x = father[x];
}
return x;
}
void Union(int a,int b)
{
a = findRoot(a); // 直接让两个根进行比较
b = findRoot(b);
if(a == b) //在一个集合中,则什么都不做
return;
if(height[a] > height[b] ){ //矮树作为高树的子树
father[b] = a;
}
else if(height[a] < height[b]) {
father[a] = b;
}
else{
father[b] = a;
height[a]++; //两个高度相同,加一即可
}
}
int main()
{
int n,m;
while(cin >> n){ //n个城镇,m条道路
if(n == 0)
break;
cin >> m;
for(int i=1;i<=n;i++){ //初始化
father[i] = i; //每个结点都是根节点,即指向自己
height[i] = 0; //每个结点高度为0
}
for(int i=0;i<m;i++){
int a,b;
cin >> a >> b;
Union(a,b); //合并集合!
}
int ans = 0;
for(int i=1;i<=n;i++){
if(findRoot(i) == i){ //这里很机智,直接计算根节点的数量,也就是集合的数量
ans++;
}
}
cout << ans - 1 << endl; //集合的数量减1即为还需要的道路数
}
}