HDU折线分割平面

折线分割平面

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 30255    Accepted Submission(s): 20446


Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
 

Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。

 

Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。

 

Sample Input
  
  
2 1 2
 

Sample Output
  
  
2 7
 

Author
lcy
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   2046  2045  2044  2049  2041 
 

折线分割平面

http://acm.hdu.edu.cn/showproblem.php?pid=2050

Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
杭电acm2050 <wbr>折线分割平面
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。
Sample Input
2
1
2
Sample Output
2
7
 
分析:
惊叹被人思想的同时感受到自己的不足。
 
 

先看N条相交的直线最多能把平面分割成多少块

杭电acm2050 <wbr>折线分割平面

当添加第N条只显示,为了使平面最多, 则第N条直线要与前面的N-1条直线都相交,且没有任何三条直线教育一个点。

则第N条直线有N-1个交点。由于每增加N个交点,就增加N+1个平面,所以用N条直线来分隔平面,最多的数是1+1+2+3++n=1+n*(n+1)/2;

 

再看每次增加两条相互平行的直线

 
杭电acm2050 <wbr>折线分割平面

 

当第N次添加时,前面已经有2N-2条直线了,所以第N次添加时,第2N-1条直线和第2N条直线都各能增加2*n-1+1 个平面。

所以第N次添加增加的面数是2[2(n-1) 1] 4n 个。因此,总面数应该是

4n(n+1)/2 2n 2n2 1 

 

如果把每次加进来的平行边让它们一头相交

杭电acm2050 <wbr>折线分割平面

则平面13已经合为一个面,因此,每一组平行线相交后,就会较少一个面,

所以所求就是平行线分割平面数减去N,为2n2 -n 1

利用上述总结公式f(n)=2n2 -n 1

#include<stdio.h>

int main()

{

int T,n;

scanf("%d",&T);

while(T--&&scanf("%d",&n)!=EOF)

printf("%d\n",2*n*n-n+1);

return 0;

}

文章参考:点击打开链接

 

 

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值