高速列车自动驾驶控制--篇1 速度追踪曲线制作

列车自动驾驶ATO 是城市轨道列车控制系统的重要组成。在列车运行过程中,ATO 由已知信息进行优化调整,得到最优控制策略,给出控制力让列车按照最优驾驶曲线运行。目前对于ATO 控制策略的优化,国内外主要采用的方法有粒子群算法PSO,遗传算法GA 和差分进化DE 等智能算法。

考虑到列车运行的复杂性,对其运动建模简化为单质点,根据牛顿第二定律得到

式中: m 为列车的质量; a 为列车运行加速度; f( v,u)为列车运行时所受牵引力或制动力; g( v) 、w( v,s) 分别为列车运行时所受的基本阻力和附加阻力; v、u、s
分别为列车运行速度、操控工况和线路位置。对于本
文所提的牵引、制动、惰行及巡航4 种列车运行工况,
当f( v,u) 大于0 时,列车为牵引或巡航状态; 当f( v,
u) 等于0 时,列车为惰行状态,当f( v,u) 小于0 时,列
车为制动状态。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值