列车自动驾驶ATO 是城市轨道列车控制系统的重要组成。在列车运行过程中,ATO 由已知信息进行优化调整,得到最优控制策略,给出控制力让列车按照最优驾驶曲线运行。目前对于ATO 控制策略的优化,国内外主要采用的方法有粒子群算法PSO,遗传算法GA 和差分进化DE 等智能算法。
考虑到列车运行的复杂性,对其运动建模简化为单质点,根据牛顿第二定律得到
式中: m 为列车的质量; a 为列车运行加速度; f( v,u)为列车运行时所受牵引力或制动力; g( v) 、w( v,s) 分别为列车运行时所受的基本阻力和附加阻力; v、u、s
分别为列车运行速度、操控工况和线路位置。对于本
文所提的牵引、制动、惰行及巡航4 种列车运行工况,
当f( v,u) 大于0 时,列车为牵引或巡航状态; 当f( v,
u) 等于0 时,列车为惰行状态,当f( v,u) 小于0 时,列
车为制动状态。