14.剪绳子

14 剪绳子

1 题目描述

​ 给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

2 题目分析

  • 思路一:动态规划思想

    dp[i]表示长度为i的绳子剪成若干段后的最大乘积。初始dp[2] = 1,dp[3] = 2,当i>=2时,假设对于正整数i拆出的第一个正整数是j(1<= j <i),则有以下两种方案:

    1. 将i拆分成j和i-j的和,且i-j不再拆分,则此时的乘积是j*(j - i);
    2. 将i拆分成j和i-j的和,且i-j还能再拆分,则此时的乘积是i*dp[j - i];

    因此,当j固定时有dp[i] = max(j*(i-j), j * dp[j - i]);j的取值范围是1~i-1,因此动态转移方程为:

在这里插入图片描述

最终返回dp[n]就是最后的答案。

public static int integerBreak(int n) {
    int[] dp = new int[n + 1];
    for (int i = 2; i <= n; i++) {
        int curMax = 0;
        for (int j = 1; j < i; j++) {
            curMax = Math.max(curMax, Math.max(j * (i - j), j * dp[i - j]));
        }
        dp[i] = curMax;
    }
    return dp[n];
}
  • 思路二:数学+贪心

    尽可能的多分成3结果是最大的,证明可看课本。

    public int cuttingRope(int n) {
        if (n < 4) return n - 1;
        // 尽可能多的剪去长度为3的绳子段
        int timeOf3 = n / 3;
    
        // 当绳子最后长度为4的时候,不能再剪长度为3的绳子段了,修改成2*2的
        if (n - timeOf3 * 3 == 1) {
            timeOf3 -= 1;
        }
        int timeOf2 = (n - timeOf3 * 3) / 2; // 非2即1
        return (int)(Math.pow(3, timeOf3) * Math.pow(2, timeOf2));
    } 
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值