14 剪绳子
1 题目描述
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
2 题目分析
-
思路一:动态规划思想
dp[i]表示长度为i的绳子剪成若干段后的最大乘积。初始dp[2] = 1,dp[3] = 2,当i>=2时,假设对于正整数i拆出的第一个正整数是j(1<= j <i),则有以下两种方案:
- 将i拆分成j和i-j的和,且i-j不再拆分,则此时的乘积是j*(j - i);
- 将i拆分成j和i-j的和,且i-j还能再拆分,则此时的乘积是i*dp[j - i];
因此,当j固定时有dp[i] = max(j*(i-j), j * dp[j - i]);j的取值范围是1~i-1,因此动态转移方程为:
最终返回dp[n]就是最后的答案。
public static int integerBreak(int n) {
int[] dp = new int[n + 1];
for (int i = 2; i <= n; i++) {
int curMax = 0;
for (int j = 1; j < i; j++) {
curMax = Math.max(curMax, Math.max(j * (i - j), j * dp[i - j]));
}
dp[i] = curMax;
}
return dp[n];
}
-
思路二:数学+贪心
尽可能的多分成3结果是最大的,证明可看课本。
public int cuttingRope(int n) { if (n < 4) return n - 1; // 尽可能多的剪去长度为3的绳子段 int timeOf3 = n / 3; // 当绳子最后长度为4的时候,不能再剪长度为3的绳子段了,修改成2*2的 if (n - timeOf3 * 3 == 1) { timeOf3 -= 1; } int timeOf2 = (n - timeOf3 * 3) / 2; // 非2即1 return (int)(Math.pow(3, timeOf3) * Math.pow(2, timeOf2)); }