16.数值的整数次方

16 数值的整数次方

1 题目描述

​ 实现 pow(x, n) ,即计算 x 的 n 次幂函数。不得使用库函数,同时不需要考虑大数问题。

2 题目分析

​ 考虑次方的正负问题,分治的思想:2 2^2 2^4 2^8…这样能将时间复杂度降到O(logn)具体实现采用递归思想,测试用例:

  1. x=0,1

  2. n=0,1

  3. n为负数

  4. 边界溢出

  5. 正常用例

3 代码

public double myPow(double x, int n) {
    long N = n;
    return N > 0 ? quickPow(x, N) : 1 / quickPow(x, -N);
}

public double quickPow(double x, long N) {
    if (N == 0) return 1.0;

    double ret = quickPow(x, N >> 1);
    ret *= ret;
    if ((N & 1) == 1) {
        // 如果是奇数则还需乘以x
        ret *= x;
    }
    return ret;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值