题目:https://vjudge.net/contest/173827#problem/E(UVA:11426)
这题真是值得反省自己,之前做过一遍,比赛的时候硬是没想起来怎么做的,完全没有思路,这就很难受,很绝望,所以这回认认真真的把这个题又补了一遍。。。
题意:
求sum(gcd(i,j),1<= i < j < =n) 1 < n< 4000001
问题转化成怎么求f(n),对于一个n来说,枚举因子乘上个数即可。
我们假设b[n]表示1到n-1与n的gcd的和,那么G[n]=G[n-1]+b[n];
a[i]表示与gcd(n, x)= i 的x的个数;b[n]=sum( a[i] * i ) , 所以我们只需求a[i]即可;根据gcd(n, x)=i —–>gcd(n/i, x/i) = 1,
因此仅仅要求出欧拉函数phi(n / i),就能够得到与n / i互质的个数,从而求出gcd(x , n) = i的个数,这样总体就能够求解了
详见博客:(1)http://www.cnblogs.com/zhengguiping–9876/p/4998848.html
(2)http://blog.csdn.net/hyogahyoga/article/details/8520895
补充:对于欧拉函数,根据分解定理可以求得phi【n】,但是要求每个人数的欧拉函数值的时候,可以用欧拉打表法,就不需要一个一个的求了,打表法如下:
phi[1]=1;
for(int i=2; i<maxn; i++)
{
if(!phi[i])
{
for(int j=i; j<maxn; j+=i)
{
if(!phi[j])
{
phi[j]=j;
}
phi[j]=phi[j]/i*(i-1);
}
}
}
关于本题的博客如下:
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
const ll maxn=4000001;
ll phi[maxn],s[maxn],b[maxn];
int main()
{
ll n;
memset(phi,0,sizeof(phi));
memset(s,0,sizeof(s));
memset(b,0,sizeof(b));
phi[1]=1;
for(int i=2; i<maxn; i++)
{
if(!phi[i])
{
for(int j=i; j<maxn; j+=i)
{
if(!phi[j])
{
phi[j]=j;
}
phi[j]=phi[j]/i*(i-1);
}
}
}
for(int i=1;i<maxn;i++)
for(int j=i+i;j<maxn;j+=i)
b[j]+=i*phi[j/i];
for(int i=2;i<maxn;i++)
s[i]=s[i-1]+b[i];
while(scanf("%lld",&n)&&n)
{
printf("%lld\n",s[n]);
}
return 0;
}
(今天被教主说除了数学啥都不会,,,就很难受,,于是我决定最近去学学图论和数据结构,先去学一个周的线段树和后缀数组,树状数组,,,,)