hdu1806 Frequent values(RMQ&ST)

题目链接:传送门

题目大意:给出一个非严格单调递增的序列,然后给出一些查询,在一个区间内重复的数最多出现了几次。

思路:对于序列上的位置i,记录从i开始连续出现了多少个和a【i】相同的数字。

用数组b维护一个后连续重复数的数量。对这个数组b进行RMQ。

然后对于给定的一个查询,将其分为两部分,一部分是后部分,即最右边相等的几个数,他的数量无法用数组b来记录,所以拿出来单独计算,然后用rmq查询前半部分的数量,比较即可。

注意一下,肯定查询的这个区间都是同一个数,那就没有前半部分了。我们使用二分查找后半部分第一个数的位置来判断。

#include<iostream>
#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define maxn 100005
int len,Arr[maxn];
int b[maxn];
int F_maxn[maxn][20],F_min[maxn][20];

void RMQ_init()//³õʼ»¯º¯Êý
{
    int nlog=(int)(log(double(len))/log(2.0));
    for(int i=1;i<=len;i++)
		F_maxn[i][0]=F_min[i][0]=b[i];
    for(int j=1;j<=nlog;j++)
    {
        for(int i=1;i<=len;i++)
        {
            if(i+(1<<j)-1<=len)
            {
                F_maxn[i][j]=max(F_maxn[i][j-1],F_maxn[i+(1<<(j-1))][j-1]);
                F_min[i][j]=min(F_min[i][j-1],F_min[i+(1<<(j-1))][j-1]);
            }
        }
    }
}
int RMQ_Query(int l,int r)
{
    int nlog=(int)(log(double(r-l+1))/log(2.0));
    int MA=max(F_maxn[l][nlog],F_maxn[r-(1<<nlog)+1][nlog]);
    int MI=min(F_min[l][nlog],F_min[r-(1<<nlog)+1][nlog]);
    return MA;
}
int fid(int l,int r)
{
    int ans=Arr[r];
    int mid;
    while(l<r)
    {
        mid=(l+r)/2;
        if(Arr[mid]<ans)
        {
            l=mid+1;
        }
        else
        {
            r=mid;
        }
    }
    return r;
}
int main()
{
    int query;
    while(~scanf("%d",&len)&&len)
    {
        scanf("%d",&query);
        for(int i=1;i<=len;i++) scanf("%d",&Arr[i]);
        for(int i=len;i>=1;i--)
        {
            if(i==len)
            {
                b[i]=1;
            }
            else
            {
                if(Arr[i]==Arr[i+1])
                {
                    b[i]=b[i+1]+1;
                }
                else
                {
                    b[i]=1;
                }
            }
        }
        RMQ_init();

        while(query--)
        {
            int l,r;
            scanf("%d%d",&l,&r);
            int temp=fid(l,r);
            //cout<<temp<<"++"<<endl;
            int ans=r-temp+1;
            r=temp-1;
            if(l>r)printf("%d\n",ans);
            else printf("%d\n",max(ans,RMQ_Query(l,r)));
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值