hdu5536 Chip Factory(01字典树)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5536

题意:求max( (a[i] + a[j]) ^ a[k] ) (i, j, k都不相同)    ^异或

思路:一开始的想法就是n^3的暴力枚举,发现复杂度太大之后开始逐步优化。

第一次的想法就是n^2的枚举a[i]和a[j],然后对已经从小到大排序完之后的a【】数组进行二分查找来从左往右确定与(a[i] + a[j])异或最大值的数,因为尽可能的大,所以0找1,1找0.但最后还是会超时。

最后想到用数据结构字典树来存所有的数,这样每次的查找不用一位一位的进行二分查找确认,只要走一遍字典树的根节点到子节点就好了。具体方法如下:

建一个字典树直接找,每次先删除a[i],a[j]然后找出剩下的与a[i]+a[j]的最大异或和,然后然把a[i],a[j]插回去

#include<bits/stdc++.h>
 
using namespace std;
 
const int MAXN=100010;
int T_T,n,a[MAXN];
 
struct Trie
{
    int ch[2],size;
}T[MAXN];
 
int root=1,tot=1;
 
void Insert(int x)
{
    int o=root;
    T[o].size++;
    for(int k=30;k>=0;k--)
    {
        int c;
        if(x&(1<<k))
            c=1;
        else
            c=0;
        if(!T[o].ch[c])
         T[o].ch[c]=++tot;
 
        o=T[o].ch[c];
        T[o].size++;
    }
}
 
void Delete(int x)
{
    int o=root;
    T[o].size--;
    for(int k=30;k>=0;k--)
    {
        int c;
        if(x&(1<<k)) c=1;
        else c=0;
        o=T[o].ch[c];
        T[o].size--;
    }
}
 
int Query(int x)
{
    int o=root;
    for(int k=30;k>=0;k--)
    {
        int c;
        if(x&(1<<k)) c=1;
        else c=0;
        if(c==1)
        {
            if(T[o].ch[0]&&T[T[o].ch[0]].size)
                o=T[o].ch[0];
            else
                o=T[o].ch[1],x^=(1<<k);
        }
        else
        {
            if(T[o].ch[1]&&T[T[o].ch[1]].size)
                o=T[o].ch[1],x^=(1<<k);
            else
                o=T[o].ch[0];
        }
    }
    return x;
}
 
int main()
{
    scanf("%d",&T_T);
    while(T_T--)
    {
        int ans=0;
        scanf("%d",&n);
 
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
 
        for(int i=1;i<=n;i++)
            Insert(a[i]);
 
        for(int i=1;i<=n;i++)
        {
            Delete(a[i]);
            for(int j=i+1;j<=n;j++)
            {
                Delete(a[j]);
                ans=max(ans,Query(a[i]+a[j]));
                Insert(a[j]);
            }
            Insert(a[i]);
        }
        printf("%d\n",ans);
 
        for(int i=1;i<=tot;i++)
        T[i].ch[0]=0,T[i].ch[1]=0,T[i].size=0;
 
        tot=1;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值