蓝桥杯 算法提高 拿糖果

哈哈,自己写,过了一道算法提高,开心

这题,就是想明白了就是一个从4开始到n的动态规划问题(因为1到3,dp数组对应的值都为0,因为不符合可以取糖果的题意)

用一个dp数组来代表动态规划数组,i代表此时所剩的糖果数

该题的动态规划转移方程为


dp( i )=max{dp( i - 2j)+j,dp[ i ]) (i>=4&&i>=2j)


这题还有一个点要注意,就是如果用函数取判断质数会超时,

所以要用一个判别素数的素数数组

是素数就另数组里保留0,不是就保留1,这样调用时就省去了栈调用


还有一个点,测试数据的《=100000,超出了int的范围,所以要用long int

最后就过啦


ac代码如下


#include <iostream>
#include <cmath>
#include <memory.h>
using namespace std;
long int n;
long int dp[100000];
int vis[100000];

int main()
{
	cin>>n;
	memset(dp,0,sizeof(dp));
	memset(vis,0,sizeof(vis));
	for(long int i=2;i<=n;i++){
		for(long int j=2;j<=sqrt(i);j++){
			if(i%j==0)vis[i]=1;
			break;
		}	
	}
	for(long int i=4;i<=n;i++){
		for(long int j=2;j<=sqrt(i);j++){
			if(i<2*j)break;
			if(vis[j]==0&&i%j==0){
				dp[i]=max(dp[i-2*j]+j,dp[i]);//实现状态转移方程
			}
		}
	}
	cout<<dp[n]; //输出最终态
	return 0; 
}



  • 1
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:精致技术 设计师:CSDN官方博客 返回首页
评论

打赏作者

持之以恒-zx

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值