哈哈,自己写,过了一道算法提高,开心
这题,就是想明白了就是一个从4开始到n的动态规划问题(因为1到3,dp数组对应的值都为0,因为不符合可以取糖果的题意)
用一个dp数组来代表动态规划数组,i代表此时所剩的糖果数
该题的动态规划转移方程为
dp( i )=max{dp( i - 2j)+j,dp[ i ]) (i>=4&&i>=2j)
这题还有一个点要注意,就是如果用函数取判断质数会超时,
所以要用一个判别素数的素数数组
是素数就另数组里保留0,不是就保留1,这样调用时就省去了栈调用
还有一个点,测试数据的《=100000,超出了int的范围,所以要用long int
最后就过啦
ac代码如下
#include <iostream>
#include <cmath>
#include <memory.h>
using namespace std;
long int n;
long int dp[100000];
int vis[100000];
int main()
{
cin>>n;
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
for(long int i=2;i<=n;i++){
for(long int j=2;j<=sqrt(i);j++){
if(i%j==0)vis[i]=1;
break;
}
}
for(long int i=4;i<=n;i++){
for(long int j=2;j<=sqrt(i);j++){
if(i<2*j)break;
if(vis[j]==0&&i%j==0){
dp[i]=max(dp[i-2*j]+j,dp[i]);//实现状态转移方程
}
}
}
cout<<dp[n]; //输出最终态
return 0;
}