问题描述
妈妈给小B买了N块糖!但是她不允许小B直接吃掉。
假设当前有M块糖,小B每次可以拿P块糖,其中P是M的一个不大于根号下M的质因数。这时,妈妈就会在小B拿了P块糖以后再从糖堆里拿走P块糖。然后小B就可以接着拿糖。
现在小B希望知道最多可以拿多少糖。
假设当前有M块糖,小B每次可以拿P块糖,其中P是M的一个不大于根号下M的质因数。这时,妈妈就会在小B拿了P块糖以后再从糖堆里拿走P块糖。然后小B就可以接着拿糖。
现在小B希望知道最多可以拿多少糖。
输入格式
一个整数N
输出格式
最多可以拿多少糖
样例输入
15
样例输出
6
数据规模和约定
N <= 100000
这个题采用动态规划,设dp[i]是当糖果为i时的最大那糖果数,prime[]数组用来盛不大于根号n的质数,那么动态方程为
dp[i]=max(dp[i],dp[i-2*prime[j]]+prime[j])(j用来遍历prime数组找出i的质因数),
当糖果数为i时最大拿走的糖果数=拿走得prime[j]个糖果+剩下的i-2*prime[j]个糖果时最大拿走的糖果数,有点拗口
#include<iostream>
#include<cmath>
using namespace std;
int prime[100005],dp[100005]={0};
bool isprime(int n)//判断质数
{
if(n==2)
return true;
for(int i=2;i<=n/2;i++)
if(n%i==0)
return false;
return true;
}
int create(int n)//创建小于根号n的素数数组
{
if(n<4)
return 0;
int k=0;
for(int i=2;i<=sqrt(n);i++)
{
if(isprime(i))
prime[k++]=i;
}
return k;
}
int main()
{
int n,k;
cin>>n;
k=create(n);
if(!k)
cout<<"0"<<endl;
else
for(int i=4;i<=n;i++)
for(int j=0;prime[j]<=sqrt(i)&&j<k;j++)
{
if(i%prime[j]==0)//当是质因数时
dp[i]=max(dp[i],dp[i-2*prime[j]]+prime[j]);
}
cout<<dp[n]<<endl;
return 0;
}